TO THE MODELING ISSUES OF LIFE CYCLE OF DEFORMATION WORK OF THE RAILWAY TRACK ELEMENTS

I. O. Bondarenko

Abstract


Purpose. This article highlightsthe operational cycle modeling of the railway track elements for the development processes study of deformability as the basis of creating a regulatory framework of the track while ensuring the reliability of the railways. Methodology.The basic theory of wave propagation process in describing the interaction of track and rolling stock are used to achieve the goal. Findings. The basic provisions concerning the concept «the operational cycle of the deformation track» were proposed and formulated. The method was set. On its base the algorithm for determining the dynamic effects of the rolling stock on the way was obtained. The basic principles for the calculation schemes of railway track components for process evaluation of the deformability of the way were formulated. An algorithm was developed, which allows getting the field values of stresses, strains and displacements of all points of the track design elements. Based on the fields of stress-strain state of the track, an algorithm to establish the dependence of the process of deformability and the amount of energy expended on the deformability of the track operation was created. Originality.The research of track reliability motivates the development of new models, provides an opportunity to consider it for some developments. There is a need to define the criteria on which the possibility of assessing and forecasting changes in the track states in the course of its operation. The paper proposed the basic principles, methods, algorithms, and the terms relating to the conduct of the study, questions the reliability of the track. Practical value. Analytical models, used to determine the parameters of strength and stability of tracks, fully meet its objectives, but cannot be applied to determine the parameters of track reliability. One of the main factors of impossibility to apply these models is a quasi-dynamic approach. Therefore, as a rule, not only one dynamic process of the railway track is prepared and assayed, but also its consequences. In addition, such models are flat, that also adds some complexity to compare the results with the experiment, since the process is not easy to distinguish the bulk of its limited influence in parts. The application of numerical methods extends the capabilities, and makes it impossible to consider the dynamic process, because it is impossible to introduce the processes that govern the response to the load. Therefore, the proposed modeling makes it possible to examine directly the dynamic process and evaluate the process due to the new criterion, the operational cycle of the strain gauge.


Keywords


modeling; operational cycle; the deformability of the track; the residual strain; efficiency; wave propagation; the stress-strain state of the track; track reliability; track travel

References


Bondarenko I.O., Kurgan D.M. Vyrishennia zadach nadiinosti systemy na osnovi modeliuvannia napruzheno-deformatsiinoho stanu zaliznychnoi kolii zasobamy teorii rozpovsiudzhennia pruzhnykh khvyl [Solution of the problems of system reliability on the basis of modeling of stress-strain state of the track using the theory of elastic waves propagation]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu − Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 1 (43), pp. 139-148.

Bondarenko I.O., Kurgan D.M., Patlasov O.M., Savluk V.Ye. Vykorystannia tsyfrovoi vymiriuvalnoi tekhniky dlia eksperymentalnykh doslidzhen vzaiemodii kolii i rukhomoho skladu [The use of digital measuring instruments for experimental studies of interaction between track and rolling stock]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2011, issue 37, pp. 124-128.

Landau L.D., Lifshits Ye.M. Teoreticheskaya fizika. Teoriya uprugosti [Theoretical physics. Theory of elasticity].Moscow, Nauka Publ., 1987. Vol. VII. 248 p.

Metodicheskiyye rekomendatsii po primeneniyu seysmoakusticheskikh metodov dlya izucheniya fiziko-mekhanicheskikh svoystv svyaznykh gruntov [Guidelines on the application of seismic acoustic methods for studying the physical and mechanical properties of cohesive soils].Moscow, TsNIIS Publ., 1976. 70 p.

Praktychni rekomendatsii shchodo provedennia vkhidnoho kontroliu yakosti materialiv verkhnoi budovy kolii [Practical recommendations for the incoming quality control of materials for the track structure]. Dnipropetrovsk, Art-Press Publ., 2003. 196 p.

Filippov A.V. Kolebaniya deformiruyemykh sistem [Fluctuations of deformed systems].Moscow, Mashinostroyeniye, 1970. 734 p.

Achenbach J.D., Sun C.T. Moving load on a flexible supported Timoshenko beam. International Journal of Solid and Structures, 1965, no. 1, pр. 353-370. doi : 10.1016/0020-7683(65)90001-6

Belotserkovskiy P.M. On the oscillations of infinite periodic beams subjected to a moving concentrated force. Journal of Sound and Vibration, 1996, no. 193 (3), pр. 706-712. doi : 10.1006/jsvi.1996.0309

Bogacz R., Krzyzinski T., Popp K. On dynamics of systems modeling continuous and periodic guideways. Archives of Mechanics, 1993, no. 45 (5), pр. 575-593.

Jezequel L. Response of periodic systems to a moving load. ASME Jornal of Applied Mechanics, 1981, no. 48 (3), pр. 603-618.

Hadamard J. Lectures on Cauchy’s problem in linear partial differential equations. New-York,Dover Publications, 1954. 315 p. doi : 10.1063/1.3061337

Knothe K. Gleisdynamik und Wechselwirkung zwischen Fahrzeug and Fahrweg. ZANGEWMATHMECH, 1999, no. 79 (11), pр.723-737. doi : 10.1002/(sici)1521-4001(199911)79:113.0.co;2-m

Kulikovskii A.G., Chugainova A.P., Sveshnikova E.I. On the nonuniqueness of solutions to the nonlinear equations of elasticity theory. Journal of Engineering Mathematics, 2006, Vol. 55, no. 1-4, pp. 97-110.

Wriggers P. Nonlinear finite element analysis. Berlin, Springer Publ., 2008. 559 p.


GOST Style Citations


1. Бондаренко, І. О. Вирішення задач надійності системи на основі моделювання напружено-деформаційного стану залізничної колії засобами теорії розповсюдження пружних хвиль / І. О. Бондаренко, Д. М. Курган // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. – 2013. – № 1 (43). – С. 139–148.

2. Використання цифрової вимірювальної техніки для експериментальних досліджень взаємодії колії і рухомого складу / І. О. Бондаренко, Д. М. Курган, О. М. Патласов, В. Є. Савлук // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2011. – Вип. 37. – С. 124–128.

3. Ландау, Л. Д. Теоретическая физика. Теория упругости. Т. VII / Л. Д. Ландау, Е. М Лифшиц. – 4-е изд., испр. и доп. – Москва : Наука, 1987. – 248 с.

4. Методические рекомендации по применению сейсмоакустических методов для изучения физико-механических свойств связных грунтов. – Москва : ЦНИИС, 1976. ‑ 70 с.

5. Практичні рекомендації щодо проведення вхідного контролю якості матеріалів верхньої будови колії : розпорядження Головного управління колійного господарства України від 30.01.2003 р. № ЦП-7/72. – Дніпропетровськ : Арт-Прес, 2003. – 196 с.

6. Филиппов, А. В. Колебания деформируемых систем / А. В. Филиппов. – Москва : Машиностроение, 1970. – 734 с.

7. Achenbach, J. D. Moving load on a flexible supported Timoshenko beam / J. D. Achenbach, C. T. Sun // Intern. J. of Solid and Structures. – 1965. ‑ № 1. – Р. 353–370. doi : 10.1016/0020-7683(65)90001-6

8. Belotserkovskiy, P. M. On the oscillations of infinite periodic beams subjected to a moving concentrated force / P. M. Belotserkovskiy // J. of Sound and Vibration. – 1996. – № 193 (3). ‑ Р.706–712. doi : 10.1006/jsvi.1996.0309

9. Bogacz, R. On dynamics of systems modeling continuous and periodic guideways / R. Bogacz, T. Krzyzinski, K. Popp // Archives of Mechanics. – 1993. – № 45 (5). ‑ Р. 575–593.

10. Jezequel, L. Response of periodic systems to a moving load / L. Jezequel // ASME J. of Applied Mechanics. – 1981. – № 48 (3). ‑ Р. 603–618.

11. Hadamard, J. Lectures on Cauchy’s problem in linear partial differential equations / J. Hadamard. – New York : Dover Publications, 1954. ‑ 315 p. doi : 10.1063/1.3061337

12. Knothe, K. Gleisdynamik und Wechselwirkung zwischen Fahrzeug and Fahrweg / K. Knothe // ZANGEWMATHMECH. – 1999. – № 79 (11). ‑ P. 723–737. doi : 10.1002/(sici)1521-4001(199911)79:11<723::aid-zamm723>3.0.co;2-m

13. Kulikovskii, G. On the nonuniqueness of solutions to the nonlinear equations of elasticity theory / A. G. Kulikovskii, A. P. Chugainova, E. I. Sveshnikova // J. of Engineering Mathematics. – 2006. – Vol. 55, № 1–4. – P. 97–110. doi : 10.1007/s10665-004-3064-7

14. Wriggers, P. Nonlinear finite element analysis / P. Wriggers. –Berlin: Springer, 2008. ‑ 559 p.



DOI: https://doi.org/10.15802/stp2015/38247

 

Cited-by:

1. FEATURES OF THE RESEARCH WORK ELEMENTS DEFORMABILITY OF RAILWAY TRACK
I. O. Bondarenko
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 4(58)  First page: 87  Year: 2015  
doi: 10.15802/stp2015/49212

2. STUDY OF CARRYING CAPACITY OF A CORRUGATED METAL CONSTRUCTION BY CRITERION OF YIELD HINGE DEVELOPMENT
Y. Y. Luchko, V. V. Kovalchuk, O. S. Nabochenko
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 5(59)  First page: 180  Year: 2015  
doi: 10.15802/stp2015/55340

3. PROCESS FEATURES OF FLUCTUATIONS PROPAGATION AT STRESS-STRAIN WORK OF THE RAILWAY TRACK
I. O. Bondarenko
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 5(59)  First page: 75  Year: 2015  
doi: 10.15802/stp2015/55336



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)