EVALUATION OF ECOLOGICAL SITUATION IN CASE OF ACCIDENTS ON TOWNSHIP ROADS

T. I. Rusakova

Abstract


Purpose. The paper examines the question of creation a mathematical apparatus for estimation the ecological situation in case of accidents on township roads (explosions). First of all the development of numerical model to calculate the level of air pollution in the emission of toxic chemical, taking into account meteorological parameters of the environment. Identifying areas where the maximum allowable concentration of this pollutant (in this case, ammonia) is exceeded and favorable areas for the population.Methodology. The developed method of numerical calculation of the air pollution concentration in case of toxic chemical (ammonia) was used, which is based on the coordinated decision of the hydrodynamic task and task of the pollutants transfer in the atmosphere. Hydrodynamic solution is based on the method of discrete vortices with the different geometry of buildings and their relative position, and solution of the task about transfer the pollutant is based on convection-diffusion equation of pollutant transfer using implicit difference schemes.Findings. Several computational experiments were made on the base of the developed numerical model.As a result of the calculations the vortex structures were obtained, which are formed in the flow around buildings; the velocity field of the wind flow around buildings and picture of the streamlines in the flow were come out; the concentration of the toxic chemical (ammonia) in research domain was calculated; the comparative analysis with the maximum permissible concentration (MPC) for this pollutant were made; the regularities of changing the ammonia concentration from different sides of the building were determined. Originality. A numerical model that allows visually reconstructing and analyzing the flow pattern, the presence of dead zones, areas of reverse flow at different geometry of buildings and their relative position that influences the distribution of pollutant in the atmosphere was calculated.Practical value. The obtained results will allow evaluating the level toxic shock to persons in case of accidents (explosions) on township roads with taking into account the influence of the buildings geometry on the hydrodynamic flow structure and dispersion of pollution.


Keywords


chemically hazardous substance; emission of pollutant intensity; concentration of the pollutant; the method of discrete vortices; equation of transfer impurity; the numerical model

References


Belotserkovskiy S.M., Kotovskiy V.N., Nisht M.I. Matematicheskoye modelirovaniye ploskoparallelnogo otryvnogo obtekaniya tel [Mathematical modeling of plane-parallel separated flow around bodies].Moscow, Nauka Publ., 1988. 232 p.

Belyayev N.N., Gunko Ye.Yu., Rostochilo N.V. Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv [Protection of buildings against the penetration of hazardous substances]. Dnipropetrovsk, Akcent PP Publ., 2014. 136 p.

Belyayev N.N., Rostochilo N.V., Nedopekin F.V. Modelirovaniye lokalnoy zashchity zdaniy (shelter in-place) s uchetom sorbtsii opasnogo veshchestva na poverkhnostyakh vnutri pomeshcheniy [Modeling of the building local protection (shelter in-place) including sorbtion of hazardous contaminant on indoor surfaces]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu − Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2014, No. 4 (52), pp. 23-36.

Belyayev N.N., Berlov A.V., Mashikhina P.B. Modelirovaniye nestatsionarnykh protsessov avariynogo zagryazneniya atmosfery [Simulation of nonstationary processes of accidental pollution in the atmosphere]. Dnipropetrovsk, Akcent PP Publ., 2014. 127 p.

Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushhey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Publ., 1982. 320 p.

Pliatsuk L.D., Boiko V.V. Otsinka vplyvu polia vitru ta koefitsiienta turbulentnosti pry modeliuvanni rozpovsiudzhennia vykydiv v atmosferi [Impact assessment of wind field and turbulence factor at simulation of emission atmosferіc propagation]. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho [Bulletin of Kremenchuk Mykhailo Ostrohradskyi National University], 2011, no. 66, vol. 1, pp. 141-144.

Rusakova T.I. Prognozirovaniye zagryazneniya vozdushnoy sredy ot avtotrnsporta na ulitsakh i microrayonakh goroda [Prediction of air pollution from moto transport on city streets and districts]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu − Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 6 (48), pp. 32-44.

Samarskiy A.A. Teoriya raznostnykh skhem [The theory of difference schemes]. Moskow, Nauka Publ., 1983. 616 p.

Svetlichnaya S.D. Otsenka poluchennoy toksodozy pri rasprostranenii pervichnogo oblaka toksicheskogo veshchestva [Evaluation of the toxic dose during the primary cloud propagation of toxic substance]. Problemy nadzvychainykh sytuatsii − Problems of Emergencies, 2011, issue, 13, pp. 127-132.

Zgurovskiy M.Z., Skopetskiy V.V., Khrushch V.K., Belyayev N.N. Chislennoye modelirovaniye rasprostraneniya zagryazneniya v okruzhayushchey srede [Numerical modelling of pollution in the environment]. Kyiv, Naukova Dumka Publ., 1997. 368 p.

Biliaiev M. M., Rostochilo N. V., Kharytonov M.M. Expert systems for assessing disaster impact on the environment. Improving Disaster Resilience and Mitigation – IT Means and Tools, NATO Science for Pease and Security Series C: Environmental Security, 2014, pp. 153-165. doi: 10.1007/978-94-017-9136-6_10.

Bouder F. Risk Perception and Communication. Improving Disaster Resilience and Mitigation – IT Means and Tools, NATO Science for Pease and Security Series C: Environmental Security, 2014. pp. 45-62. doi: 10.1007/978-94-017-9136-6_3.

Chen Q. Protecting buildings from chemical and biological warfare agent attacks– a long journey. Editorial, HVAC&R Research, 2004, vol. 10, issue 4, pp. 389-391. doi: 10.1080/10789669.2004.10391110.

Qu Y., Millez M., Musson-Genon L., Carissimo B. Development of Building Resolving Atmospheric CFD Code Taking into Account Atmospheric Radiation in Complex Geometries. Air Pollution Modeling and its Application XXI, NATO SPS Series C: Environmental Security, 2012, pp. 75-80. doi: 10.1007/978-94-007-1359-8_13.

Kitada T. Episodic High Surface Ozone in Central Japan in Warm Season: Relative Importance of Local Production andLongRangeTransport. Air Pollution Modeling and its Application, NATO SPS Series C: Environmental Security, 2010, pp. 233-239. doi: 10.1007/978-94-007-1359-8_39.

Murakami S., Mochida A., Yoshihiko H. Comparison of «k-ε» model, ASM and LES with wind tunnel test for flow field around cubic model. 8th Intern. Conf. on Wind Engineering.Western Ontario, 1991, no. 12, p. 3.

Persily A., Chapman R., Emmerich J.S. Building Retrofits for Increased Protection against Airborne Chemical and Biological Releases. National Institute of Standardsand Technology. Technology Administration. U. S. Department of Commerce, 2007, pp. 1-179. Available at: http://fire.nist.gov/bfrlpubs/build07/PDF/b07006.pdf (Accessed 12 March 2015).

Protecting Buildings Occupants and Operations from Biological and Chemical Airborne Threats. Committee on Protecting Occupants of DOD Buildings from Chemical and Biological Release, 2007, pp. 1-152. Available at: http://www.nap.edu/openbook.php?record_id=11965&page=R2 (Accessed 12 March 2015).

Roberto F., Rodi D.J. Transport and Dispersion of Biological Agents/Toxins. SCAPA. Biosafety Working Group, 2009, pp. 1-25. Available at: http://orise.orau.gov/emi/scapa/files/TransportandDispersion.pdf (Accessed 12 March 2015).

Sathe Yogesh V. Air Quality Modeling in Street canyons of Kolhapur City. Universal Jornal of Environmental Research and Technology, 2012, vol. 2, issue 2, pp. 97-105.


GOST Style Citations


  1. Белоцерковский, С. М. Математическое моделирование плоскопараллельного отрывного обтекания тел / С. М. Белоцерковский, В. Н. Котовский, М. И. Ништ. – Москва : Наука, 1988. – 232 с.
  2. Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
  3. Беляев, Н. Н. Моделирование локальной защиты зданий (shelter in-place) с учетом сорбции опасного вещества на поверхностях внутри помещений / Н. Н. Беляев, Н. В. Росточило, Ф. В. Недопекин // Наука та прогресс трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. – 2014. – № 4 (52). – С. 23–36.
  4. Беляев, Н. Н. Моделирование нестационарных процессов аварийного загрязнения атмосферы / Н. Н. Беляев, А. В. Берлов, П. Б. Машихина. – Днепропетровск : Акцент ПП, 2014. – 127 с.
  5. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 c.
  6. Пляцук, Л. Д. Оцінка впливу поля вітру та коефіцієнта турбулентності при моделюванні розповсюдження викидів в атмосфері / Л. Д. Пляцук, В. В. Бойко // Вісн. КНУ ім. М. Остроградського. – Київ, 2011. – Вип. 1, № 66. – С. 141–144.
  7. Русакова, Т. И. Прогнозирование загрязнения воздушной среды от автотранспорта на улицах и в микрорайонах города / Т. И. Русакова // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. – 2013. – № 6 (48). – С. 32–44.
  8. Самарский, А. А. Теория разностных схем / А. А. Самарский. – Москва : Наука, 1983. – 616 с.
  9. Светличная, С. Д. Оценка полученной токсодозы при распространении первичного облака токсического вещества / С. Д. Светличная // Пробл. надзвич. ситуацій. – Харків : УЦЗУ, 2011. – Вип. 13. – С. 127–132.
  10. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Київ : Наук. думка, 1997. – 368 с.
  11. Biliaiev, M. M. Expert Systems for Assessing Disaster Impact on the Environment / M. M. Biliaiev, M. M. Kharytonov, N. V. Rostochilo // Improving Disaster Resilience and Mitigation – IT Means and Tools, NATO Science for Pease and Security Series C: Environmental Security. – 2014. – P. 153–165. doi: 10.1007/978-94-017-9136-6_10.
  12. Bouder, F. Risk Perception and Communication / F. Bouder // Improving Disaster Resilience and Mitigation – IT Means and Tools, NATO Science for Pease and Security Series C: Environmental Security. – 2014. – P. 45–62. doi: 10.1007/978-94-017-9136-6_3.
  13. Chen, Q. Protecting buildings from chemical and biological warfare agent attacks– a long journey / Q. Chen // Editorial, HVAC&R Research. – 2004. – Vol. 10. − Iss. 4. – P. 389–391. doi: 10.1080/-10789669.2004.10391110.
  14. Development of Building Resolving Atmospheric CFD Code Taking into Account Atmospheric Radiation in Complex Geometries / Y. Qu, M. Millez, L. Musson-Genon, B. Carissimo // Air Pollution Modeling and its Application XXI, NATO SPS Series C: Environmental Security. – 2012. – P. 75–80. doi: 10.1007/978-94-007-1359-8_13.
  15. Kitada, T. Episodic High Surface Ozone in Central Japan in Warm Season: Relative Importance of Local Production andLongRangeTransport / T. Kitada // Air Pollution Modeling and its Application, NATO SPS Series C: Environmental Security. – 2010. – P. 233–239. doi: 10.1007/978-94-007-1359-8_39.
  16. Murakami, S. Comparison of «k-ε» model, ASM and LES with wind tunnel test for flow field around cubic model / S. Murakami, A. Mochida, H. Yoshihiko // 8th Intern. Conf. on Wind Engineering. – WesternOntario, 1991. – № 12. – P. 3.
  17. Persily, A. Building Retrofits for Increased Protection Against Airborne Chemical and Biological Releases [Электронный ресурс] / A. Persily, R. Chapman, J. S. Emmerich // National Institute of Standards and Technology. Technology Administration.U.S.Department of Commerce. – 2007. – P. 1–179. – Режим доступа: http:// fire.nist.gov/bfrl-pubs/build07/PDF/b07006.pdf. – Загл. с экрана. – Проверено : 12.03.2015.
  18. Protecting Buildings Occupants and Operations from Biological and Chemical Airborne Threats [Электронный ресурс] // Committee on Protecting Occupants of DOD Buildings from Chemical and Biological Release. – 2007. – P. 3–152. – Режим доступа: http://www.nap.edu/ openbook.-php?record_id=11965&page=R2. – Загл. с эк-рана. – Проверено : 12.03.2015.
  19. Roberto, F. Transport and Dispersion of Biological Agents/Toxins [Электронный ресурс] / F. Roberto, D. J. Rodi // SCAPA. Biosafety Working Group. – 2009. – P. 1–25. – Режим доступа: http://orise.orau.gov/emi/scapa/files/ Transportand Dispersion.pdf. – Загл. с экрана. – Проверено : 12.03.2015.
  20. Sathe Yogesh, V. Air Quality Modeling in Street canyons of Kolhapur City / V. Sathe Yogesh // Universal J. of Environmental Research and Technology. – 2012. – Vol. 2. − Iss. 2. – P. 97–105.


DOI: https://doi.org/10.15802/stp2015/42171

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)