FEATURES OF PERCEPTION OF LOADING ELEMENTS OF THE RAILWAY TRACK AT HIGH SPEEDS OF THE MOVEMENT

D. M. Kurhan

Abstract


Purpose. Increase the train speeds movements requires not only the appropriate technical solutions, but also methodological-calculated. Most of the models and methodologies used for solving problems of stress-strain state of the railroad tracks, are based on assumptions and hypotheses adequate only for certain speeds. In the framework of this work will be discussed theoretical background of the changing nature of perceptual load elements of the railway track at high speeds and investigated the numeric parameters of the processes by means of mathematical modeling. As a practical purposes is expected to provide the levels of train speed, the boundaries of which can reasonably exclude the possibility of occurrence of the considered effects. Methodology. To achieve these objectives was used principal new model of railway track based on wave propagation theory stresses in the elastic system to study the impact of the movable load, take into account that the deflection in a particular section of the road starts even while the wheels at some distance, and moving the wheels farther from the selected section of the wave front elastic strain continues to spread. According to the results of simulations explores the changing shape of the wave front voltages in time for the foundation under the rail. If the train speeds substantially less than the velocity propagation of elastic waves, the wheel remains in the area implemented deformations. Findings. Alternative calculations for various parameters of the railway track (especially for different soil conditions) determined the levels of train speed, the boundaries of which can reasonably exclude the possibility of occurrence of the considered effects. Originality. The proposed theoretical study and implementation in the form of mathematical models for processes that occur in the perception of load elements of the railway track at high speeds. Practical value. According to simulation results obtained levels of speeds, which define the appearance of the considered dynamic effects in the base under the rail, can be used to justify path construction or establishment of appropriate values of allowable velocities for the implementation of traffic at high speeds.


Keywords


superstructure; high-speed movement; tension of rail; rail deflection; wave model; slab track; ground distortion

Full Text:

PDF

References


Bondarenko I.O., Kurhan D.M. Vyrishennia zadach nadiinosti systemy na osnovi modeliuvannia napruzheno-deformatsiinoho stanu zaliznychnoi kolii zasobamy teorii rozpovsiudzhennia pruzhnykh khvyl [Solution of the problems of system reliability by modeling the stress-strain state of rail track using the theory of elastic waves propagation]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 1 (43), pp. 139-148.

Bondarenko I.O., Kurhan D.M. Zastosuvannia teorii rozpovsiudzhennia pruzhnykh khvyl dlia vyrishennia zadach napruzheno-deformatsiinoho stanu zaliznychnoi kolii [Application the theory of elastic waves distribution for the problems solution of stress-strain state of the railway]. Transportni systemy i tekhnolohii. Zbirnyk naukovykh prats Derzhavnoho ekonomiko-tekhnolohichnoho universytetu transportu [ Transport system and Technology. Proc. of State Economy andTechnologyUniversity of Transport]. Kyiv, 2011, no. 18, pp. 14-18.

Brandl Kh., Paulmichl A. Vzaimodeystviye osnovaniy i sooruzheniy vysokoskorostnykh zheleznykh dorog. [The interaction of the grounds and structures of high-speed railways]. XIII Dunaysko-Yevropeyskaya konferentsiya po geotekhnike (29–31.05.2006). [Danube-European conference on geotechnical engineering,Lublin,Slovenia (29–31 May 2006)]. Lyublyana, Sloveniya. Available at: http://www.gerec.spb.ru/journals/11/files/11009.pdf (Accessed 17 February 2015).

Danilenko E.I. Zaliznychna koliia. Ulashtuvannia, proektuvannia i rozrakhunky, vzaiemodiia z rukhomym skladom [Railway track. Device design and calculations, interaction with rolling stock]. Kyiv, Inpres Publ., 2010. Vol. 2. 456 p.

Danilenko E.I., Rybkin V.V. TsP-0117. Pravyla rozrakhunkiv zaliznychnoi kolii na mitsnist i stiikist [TsP-0117. The computations rules of the railway track for strength and stability]. Kyiv, Transport Ukrainy Publ., 2004. 64 p.

Petrenko V.D., Alkhdur A.M., Tiutkin O.L., Kovalevych V.V. Doslidzhennia parametriv modernizovanoho zemlianoho polotna [Research of parameters of the modernized subgrade]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 41, pp. 164-169.

Kolskiy G. Volny napryazheniya v tverdykh telakh [Stress Waves in Solids],Moscow, Inostrannaya literatura Publ., 1955. 192 p.

Кurgan D.М., Bondarenko I.О. Model napryazhenno-deformirovannogo sostoyaniya zheleznodorozhnogo puti na osnove volnovoy teorii rasprostraneniya napryazheniy [Model of the stress-strain state of the railway track on the basis of the straine-wave propagation theory]. Problemy Kolejnictwa, 2013, no. 159, pp. 99-111.

Transportna stratehiia Ukrainy na period do 2020 roku. № 2174-r [The transport strategy ofUkraine for the period till 2020 year. No. 21–74–r]. Available at: http://zakon1.rada.gov.ua/laws/show/2174-2010-%D1%80 (Accessed 17 February 2015).

Frishman M.A., Khokhlov I.N., Titov V.P. Zemlyanoye polotno zheleznykh dorog [Roadbed for railways]. Moscow, Transport Publ., 1972. 288 p.

Connolly D., Giannopoulos A., Forde M. Numerical modelling of ground borne vibrations from high speed rail lines on embank-ments. Soil Dynamics and Earthquake Engineering, 2013, vol. 46, pp. 13-19. doi: 10.1016/j.soildyn.2012.12.003.

Koch E., Szepesházi R. A mélykeveréses technológia vasútépítési alkalmazásának lehetőségei. Soil Dynamics and Earthquake Engineering, 2013, no. 2, pp. 9-14.

Krylov V.V., Dawson A.R., Heelis M.E., Collop A.C. Rail movement and ground waves caused by high-speed trains approaching track-soil critical velocities. Proc. of The Institution of Mechanical Engineers Part F-journal of Rail and Rapid Transit, 2000, vol. 214, no. 2, pp. 107-116. doi: 10.1243/0954409001531379.

Kouroussis G., Van Parys L., Conti C., Verlinden O. Using three-dimensional finite element analysis in time domain to model railway–induced ground vi-brations. Advances in Engineering Software, 2014, vol. 70, pp. 63–76. doi: 10.1016/j.advengsoft.2014.01.005.

Woldringh R.F., New B.M. Embankment design for high speed trains on soft soils. Proc. of the 12th Europ. Conf. on Soil Mechanics and Geotechnical Engineering (7.06-10.06.1999). Amsterdam, 1999, vol. 3, pp. 1703-1712.


GOST Style Citations


  1. Бондаренко, І. О. Вирішення задач надійності системи на основі моделювання напружено-деформаційного стану залізничної колії засобами теорії розповсюдження пружних хвиль / І. О. Бондаренко, Д. М. Курган // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. – 2013. – № 1 (43). – С. 139–148.
  2. Бондаренко, І. О. Застосування теорії розпов-сюдження пружних хвиль для вирішення задач напружено-деформаційного стану залізничної колії / І. О. Бондаренко, Д. М. Курган // Трансп. системи і технології : зб. наук. пр. ДЕТУТ. – Київ, 2011. – Вип. 18. – С. 14–18.
  3. Брандль, Х. Взаимодействие оснований и соо-ружений высокоскоростных железных дорог [Electronic resource] / Х. Брандль, А. Пауль-мичл // XIII Дунайско-Европ. конф. по геотехнике (29.05-31.05.2006 г.). – Любляна, Словения. – Режим доступу: http://www.ge-rec.spb.ru/journals/11/files/11009.pdf. – Назва з екрана. – Перевірено : 17.02.2015.
  4. Даніленко, Е. І. Залізнична колія. Улаштування, проектування і розрахунки, взаємодія з рухомим складом : підруч. для вищих навч. закладів : в 2 т. / Е. І. Даніленко. – Київ : Інпрес, 2010. – Т. 2. – 456 с.
  5. Даніленко, Е. І. Правила розрахунків залізничної колії на міцність і стійкість : ЦП-0117 / Е. І. Даніленко, В. В. Рибкін. – Київ : Трансп. України, 2004. – 64 с.
  6. Дослідження параметрів модернізованого земляного полотна / В. Д. Петренко, А. М. Алхдур, О. Л. Тютькін, В. В. Ковалевич // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2012. – Вип. 41. – С. 164–169.
  7. Кольский, Г. Волны напряжения в твердых телах / Г. Кольский. – Москва : Иностр. лит., 1955. – 192 с.
  8. Курган, Д. Модель напряженно-деформиро-ванного состояния железно-дорожного пути на основе волновой теории рас-пространения напряжений / Д. Курган, И. Бондаренко // Problemy Kolejnictwa. – 2013. – Vol. 159. – P. 99–111.
  9. Транспортна стратегія України на період до 2020 року [Electronic resource] / Схвалено розпорядженням Каб. Міністрів України від 20 жовт. 2010 р. № 2174-р. – Режим доступу: http://zakon1.rada.gov.ua/laws/show/2174-2010-%D1%80. – Назва з екрана. – Перевірено : 17.02.15.
  10. Фришман, М. А. Земляное полотно железных дорог / М. А. Фришман, И. Н. Хохлов, В. П. Титов. – Москва : Транспорт, 1972. – 288 с.
  11. Connolly, D. Numerical modelling of ground borne vibrations from high speed rail lines on embankments / D. Connolly, A. Giannopoulos, M. Forde // Soil Dynamics and Earthquake Engineering. – 2013. – Vol. 46. – P. 13–19. doi: 10.1016/j.soildyn.2012.12.003.
  12. Koch, E. A mélykeveréses technológia vasútépítési alkalmazásának lehetőségei / E. Koch, R. Szepesházi // SÍNEK VILÁGA. – 2013. – № 2. – P. 9–14.
  13. Rail movement and ground waves caused by high-speed trains approaching track-soil critical velocities / V. V. Krylov, A. R. Dawson, M. E. Heelis, A. C. Collop // Proc. of The Institution of Mechanical Engineers Part F-journal of Rail and Rapid Transit. – 2000. – Vol. 214, № 2. – P. 107–116. doi: 10.1243/0954409001531379.
  14. Using three-dimensional finite element analysis in time domain to model railway–induced ground vibrations / G. Kouroussis, L. Van Parys, C. Conti, O. Verlinden // Advances in Engineering Software. – 2014. – Vol. 70. – P. 63–76. doi: 10.1016/j.advengsoft.2014.01.005.
  15. Woldringh, R. F. Embankment design for high speed trains on soft soils / R. F. Woldringh, B. M. New // Proc. of the 12th Europ. Conf. on Soil Mechanics and Geotechnical Engineering (7.06-10.06.1999). –Amsterdam, TheNetherlands, 1999. – Vol. 3. – P. 1703–1712.


DOI: https://doi.org/10.15802/stp2015/42172

 

Cited-by:

1. ACCUMULATED DEFORMATION MODELING OF PERMANENT WAY BASED ON ENTROPY SYSTEM
D. M. Kurhan
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 4(58)  First page: 99  Year: 2015  
doi: 10.15802/stp2015/49215

2. DETERMINATION OF THE ISSUE CONCERNING THE LIFT RESISTANCE FACTOR OF LIGHTWEIGHT CAR
A. O. Shvets, К. I. Zhelieznov, А. S. Аkulov, О. M. Zabolotnyi, Ye. V. Chabaniuk
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 6(60)  First page: 134  Year: 2015  
doi: 10.15802/stp2015/57098

3. SOME ASPECTS OF THE DEFINITION OF EMPTY CARS STABILITY FROM SQUEEZING THEIR LONGITUDINAL FORCES IN THE FREIGHT TRAIN
A. O. Shvets, K. I. Zhelieznov, A. S. Akulov, O. M. Zabolotnyi, E. V. Chabaniuk
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 4(58)  First page: 175  Year: 2015  
doi: 10.15802/stp2015/49281

4. THE BASIS OF MATHEMATICAL DESCRIPTION FOR WAVE MODEL OF STRESSES PROPAGATION IN RAILWAY TRACK
D. M. Kurhan
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 5(65)  First page: 101  Year: 2016  
doi: 10.15802/stp2016/84032

5. DETERMINATION OF DYNAMIC LOADS FROM THE WHEEL ON THE RAIL FOR HIGH-SPEED TRAINS
D. M. Kurhan
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 3(57)  First page: 118  Year: 2015  
doi: 10.15802/stp2015/46069



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)