MATHEMATICAL MODEL OF THE DAMAGE ANALYSIS OF RAILWAY TRACTION ENERGY SYSTEM

O. O. Matusevych

Abstract


Purpose. The study provides the methods and models development of reducing damages of traction energy systems (TES) at electrified railways of Ukraine. Definition the indicator of preventing damage evaluation TES at electrified railways is necessary. Paper is aimed to search the modern methods and approaches to improve the system of TES monitoring, diagnosis and maintenance. Methodology. To achieve this purpose a study of foreign experience and publications that focus on problem-solving quality of TES using a linguistic approach based on the theory of fuzzy multiple numbers and linguistic variable were done. Findings. In result of research an algorithm to reduce TPS damages which operates under uncertainty was developed. It is found that the solution of this problem is possible by timely detection of actual technical condition of equipment in terms of quality maintenance, diagnostics and update resource of electrical equipment traction substations (TS) power supply TES. The study examined the fuzzy inference scheme, which is based on the use of mechanisms to minimize the area of decision-making. It contributes not only to structural identification in the process of developing a database, but also can significantly improve the efficiency of finding the parameters of fuzzy model, which in turn reduces the efforts that are necessary for the analysis and the design of effective control systems maintenance and repair (M and R) TES. Originality. For the first time the algorithm of reduction the damage of traction energy system of electrified railways of Ukraine was offered. The mathematical model of reduction the damage calculation of TES from TP power equipment failures by improving system maintenance (M and P) was developed. Firstly evaluation index was proposed to prevent the damage of traction energy system. Practical value. The article describes the fuzzy inference scheme, which is based on the use of the mechanism to minimize the area of decision-making and contributes not only to structural identification in the process of developing a database, but also can significantly improve the performance of determining the parameters of fuzzy model. Implementation of this approach comes to the determination of the main stages, features and optimal justification of quantitative and qualitative requirements for system M and R of TS. It will be done with allowable costs for improvements to reduce TPS damage and address the equipment of traction substations in working condition in terms of growth rates and volumes aging (compared to the current speed and volume of updates).


Keywords


electrified railway; traction energy system; traction substation; electrical equipment; reduction the damage; maintenance and repair; diagnosis; actual technical condition; evaluation index of reduction the damage; fuzzy sets; linguistic variables

References


Analiz roboty hospodarstva elektryfikatsii ta elektropostachannia v 2013 rotsi [Analysis of the electrification work and electricity supply in 2013]. Kyiv, Devalta Publ., 2014. 251 p.

Borisov A.N., Krumberg O.A., Fedorov I.P. Prinyatiye resheniya na osnove nechetkikh modeley: primery ispolzovaniya [Decision making based on fuzzy models: examples of usage]. Riga, Znaniye Publ., 1990. 184 p.

Zemlyanov V.B., Pshinko A.N., Domanskiy V.T., Skalozub V.V. Integrirovannaya sistema upravleniya elektrosnabzheniyem zheleznodorozhnogo transporta [The integrated power management system of railway transport]. Рrос. of 7th Intern. Sci. Conf. of Railway Experts. «JУЖЕЛ» (4.10.6.10.2000). Vrnjacka Banja, 2000, pp. 65-68.

Kosterev N.V., Bardik Ye.I. Nechetkoye modelirovaniye elektrooborudovaniya dlya otsenki tekhnicheskogo sostoyaniya i prinyatiya resheniy o strategii dalneyshey ekspluatatsii [Fuzzy modeling of electrical equipment for technical condition assessment and decision-making about the strategy of further exploitation]. Tekhnichna Elektrodynamika. Problemy suchasnoi elektrotekhniky – Technical Electrodynamics. Problems of Modern Electrical Engineering, 2006, part 3, pp. 39-43.

Kruglov V.V. Nechetkaya logika i iskusstvennye seti [Fuzzy logic and artificial networks].Moscow, Fizmatlit Publ., 2001. 221 p.

Kuznetsov V.G. Model ekonomicheskogo ushcherba ot nenadezhnosti silovogo oborudovaniya, uchastvuyushchego v regulirovanii rezhimov sistemy tyagovogo elektrosnabzheniya [The model of economic losses due to the unreliability of power equipment that is involved in the modes regulation of traction power supply system]. Vestnik Natsionalnogo tekhnicheskogo universiteta «KPI». Novyye resheniya v sovremennykh tekhnologiyakh [Bulletin of the National Technical University KhPI. New solutions in modern technologies.]. Kharkiv, 2013, no. 38 (1011), pp. 136-141.

Matusevich A.A. Postroeniye modeli sistemy zashchity informatsionno-upravlyayushchikh telemekhanicheskikh kompleksov elektrosnabzheniya zheleznykh dorog [Building a model system for the protection of information-control telemechanical railway power supply systems]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2007, issue 14, pp. 59-63.

Matusevich O.O. Suchasni pidkhody z tekhnichnoho obsluhovuvannia i remontu obladnannia tiahovykh pidstantsii elektryfikovanykh zaliznyts na osnovi SMART tekhnolohii [New approaches to maintenance and repairing of the traction substations equipment on electrified railways on the basis of SMART-technologies]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2014, no. 4 (52), pp. 75-85. doi: 10.15802/stp2014/27362.

Matusevich O.O. Udoskonalennia systemy diahnostuvannia sylovykh transformatoriv tiahovykh pidstantsii elektryfikovanykh zaliznyts [Improvement of the diagnostics system of power transformers traction substation of electrified railways]. Hirnycha elektromekhanika ta avtomatyka. Naukovo-tekhnichnyi zbirnyk [Collection of Mining Electromechanics and Automation], 2014, no. 92, pp. 31–36.

Anokhin A.M., Glotkov V.A., Pavelev V.V., Cherkashin A.M. Metody opredeleniya koeffitsientov vazhnosti kriteriyev [Methods of the coefficients importance criteria determination]. Avtomatika i telemekhanika – Automation and remote control, 1997, no. 8, pp. 3-35.

Obshchiye tekhnicheskiye trebovaniya k sistemam tyagovogo elektrosnabzheniya postoyannogo i peremennogo toka skorostnykh i vysokoskorostnykh liniy: Rekomendatsii OSZhD R-610/7. [General technical requirements for traction power supply systems, AC and DC speed and high-speed lines: Recommendations OSJD R-610/7]. Varshava, Komitet OSZhD Publ., 2002. 25 p.

Pravyla ulashtuvannia systemy tiahovoho elektropostachannia zaliznyts Ukrainy. TsE-0009 [Rules arrangement of the traction power supply system of railways of Ukraine.TsE-0009]. Kyiv, Ukrzaliznytsia Publ., 2005. 80 p.

Verhun O.F., Harkusha L.Yu. Rekomendatsii z tekhniko-ekonomichnykh rozrakhunkiv okremykh pokaznykiv ekspluatatsiinoi roboty zaliznyts. TsD-0037 [Recommendations on technical and economic calculations of individual operational performance of the Railways. TsD-0037]. Kyiv, Transport Ukrainy Publ., 2001. 64 p.

Buckley J.J., Jowers L.J., Reilly K.D. Simulating Continuous Fuzzy Systems. Information Sciences, 2007, vol. 177, issue 2, pp. 436-448. doi: 10.1016/j.ins.2006.03.005.

Wang X., Ceberio M., Virani S., Garcia A., Cummins J. Hybrid Algorithm to Extract Fuzzy Measures for Software Quality Assessment. Journal of Uncertain Syste, 2013, vol. 7 (3), pp. 219-237.

Yang H. Measuring Software Product Quality with ISO Standards Base on Fuzzy Logic Technique. Affective Computing and Intelligent Interaction.Berlin, Springer-Verlag Publ., 2012, vol. 137, pp. 59-67. doi: 10.1007/978-3-642-27866-2_8.

Zadeh L.А. Fuzzy logic. Computing with words. IEEE Transactions on Fuzzy Systems, 1996, vol. 4, no.2, pp. 103-111. doi: 10.1109/91.493904.

Zemankova-Leech M., Kandel A. Fuzzy Relational Data Bases: A Key to Expert Systems. Cologne, TUV Rheinland Publ., 1984. 68 p.

Kapіtsa M.I., Koreniuk R.O. Stratehii ekspluatatsii, tekhnichnoho obsluhovuvannia ta remontu lokomatyviv [Strategies for the operation, maintenance and locomotive repair]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 40, pp. 63-66.

Zimmerman H. Fuzzy Sets Theory – and Its Applications. Netherlands, Kluwer Academic Publishers Publ., 2001. 544 p.


GOST Style Citations


  1. Аналіз роботи господарства електрифікації та електропостачання в 2013 році. – Київ : Девалта, 2014. – 251 с.
  2. Борисов, А. Н. Принятие решения на основе нечетких моделей: примеры использования / А. Н. Борисов, О. А. Крумберг, И. П. Федоров. – Рига : Знание, 1990. – 184 с.
  3. Интегрированная система управления электроснабжением железнодорожного транспорта / В. Б. Землянов, А. Н. Пшинько, В. Т. Доманский, В. В. Скалозуб // Рrос. of the 7th Intern. Scientific Conf. of Railway Experts. «JУЖЕЛ» (4.10.6.10.2000). – Vrnjacka Banja, 2000. – C. 65–68.
  4. Капіца, М. І. Стратегії експлуатації, технічного обслуговування та ремонту локомотивів / М. І. Капіца, Р. О. Коренюк // Вісн. Дніпропетр. нац. ун–ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2012. – Вип. 40. – С. 63–66.
  5. Костерев, Н. В. Нечеткое моделирование электрооборудования для оценки технического состояния и принятия решений о стратегии дальнейшей эксплуатации / Н. В. Костерев, Е. И. Бардик // Технічна електродинаміка : тем. вип. : Проблеми сучасної електротехніки. – 2006. – Ч. 3. – С. 39–43.
  6. Круглов, В. В. Нечеткая логика и искусственные сети / В. В. Круглов. – Москва : Физматлит, 2001. – 221 с.
  7. Кузнецов, В. Г. Модель экономического ущерба от ненадёжности силового оборудования, участвующего в регулировании режимов системы тягового электроснабжения / В. Г. Кузнецов // Вестн. нац. техн. ун-та «ХПИ». Сер. : «Новые решения в современных технологиях» : сб. науч. тр. – Харьков, 2013. – № 38 (1011). – С. 136–141.
  8. Матусевич, А. А. Построение модели системы защиты информационно-управляющих телемеханических комплексов электроснабжения железных дорог / А. А. Матусевич // Вісн. Дніпропетр. нац. ун–ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2007. – Вип. 14. – С. 59–63.
  9. Матусевич, О. О. Сучасні підходи з технічного обслуговування і ремонту обладнання тягових підстанцій електрифікованих залізниць на основі SMART технологій / О. О. Матусевич // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун–ту залізн. трансп. – 2014. – № 4 (52). – С. 75–85. doi: 10.15802/stp2014/27362.
  10. Матусевич, О. О. Удосконалення системи діагностування силових трансформаторів тягових підстанцій електрифікованих залізниць / О. О. Матусевич // Гірн. електромеханіка та автоматика : наук.-тех. зб. – 2014. – № 92. – С. 31–36.
  11. Методы определения коэффициентов важности критериев / А. М. Анохин, В. А. Глотков, В. В. Павельев, А. М. Черкашин // Автоматика и телемеханика. – 1997. – № 8. – С. 3–35.
  12. Общие технические требования к системам тягового электроснабжения постоянного и переменного тока скоростных и высокоскоростных линий : Рекомендации ОСЖД Р-610/7. – Варшава : Комитет ОСЖД, 2002. – 25 с.
  13. Правила улаштування системи тягового електропостачання залізниць України : ЦЕ- 0009 : затв. Наказом Укрзалізниці від 24.12.2004 р. № 1010-ЦЗ. – Київ : Укрзалізниця, 2005. – 80 с.
  14. Рекомендації з техніко-економічних розрахунків окремих показників експлуатаційної роботи залізниць : ЦД-0037 : затв. Наказом Укрзалізниці від 18.06.2001 р. № 329-Ц / розроб. О. Ф. Вергун, Л. Ю. Гаркуша. – Київ : Трансп. України, 2001. – 64 с.
  15. Buckley, J. J. Simulating Continuous Fuzzy Systems / J. J. Buckley, L. J. Jowers, K. D. Reilly // Information Sciences. – 2007. – Vol. 177. – Iss. 2. – P. 436–448. doi: 10.1016/j.ins.2006.03.005.
  16. Wang, X. A Hybrid Algorithm to Extract Fuzzy Measures for Software Quality Assessment / X. Wang, M. Ceberio, S. Virani [et. all] // J. of Uncertain Systems. – 2013. – Vol. 7 (3). – P. 219–237.
  17. Yang, H. Measuring Software Product Quality with ISO Standards Base on Fuzzy Logic Technique / H. Yang // Affective Computing and Intelligent Interaction. – 2012. – Vol. 137. – P. 59–67. doi: 10.1007/978-3-642-27866-2_8.
  18. Zadeh, L. А. Fuzzy logic. Computing with words / L. А. Zadeh // IEEE Transactions on Fuzzy Systems. – 1996. – Vol. 4, № 2. – P. 103–111. doi: 10.1109/91.493904.
  19. Zemankova-Leech, M. Fuzzy Relational Data Bases: A Key to Expert Systems / M. Zemankova-Leech, A. Kandel. –Cologne: TUV Rheinland, 1984. – 68 p.
  20. Zimmerman, H. Fuzzy Sets Theory – and Its Applications / H. Zimmerman. – Netherlands : Kluwer Academic Publishers, 2001. – 544 p.


DOI: https://doi.org/10.15802/stp2015/46054

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)