MULTIPLE OBJECTS

Authors

  • A. A. Bosov Dep. «Applied Mathematics», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 373 15 36, e-mail AABosov@i.ua, ORCID 0000-0002-5348-2205, Ukraine http://orcid.org/0000-0002-5348-2205
  • V. M. Ilman Dep. «Computer Information Technologies», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 373 15 35, ORCID 0000-0003-0983-8611, Ukraine http://orcid.org/0000-0003-0983-8611
  • N. V. Khalipova Dep. «Transport Systems and Technologies», Academy of Customs Service of Ukraine, Dzerzhynskyi St., 2/4, Dnipropetrovsk, Ukraine, 49000, tel. +38 (056) 46 95 98, e-mail khalipov@rambler.ru, ORCID 0000-0001-5605-6781, Ukraine http://orcid.org/0000-0001-5605-6781

DOI:

https://doi.org/10.15802/stp2015/46075

Keywords:

constructive multiple structure, hybrid multiple objects, modelling, complex systems, sets, lists, multi-sets, tuples, logistics system

Abstract

Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists) and heterogeneous sets (sequences, corteges). Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain), interpretation (multiple sites) and particularization (goals). The proposed describe systems approach based on hybrid sets can be used in many application systems for structural and content analysis. An example of the use the hybrid sets for logistics systems modeling is shown.

Author Biographies

A. A. Bosov, Dep. «Applied Mathematics», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 373 15 36, e-mail AABosov@i.ua, ORCID 0000-0002-5348-2205

А. А. Босов

V. M. Ilman, Dep. «Computer Information Technologies», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel./fax +38 (056) 373 15 35, ORCID 0000-0003-0983-8611

В. М. Ильман

N. V. Khalipova, Dep. «Transport Systems and Technologies», Academy of Customs Service of Ukraine, Dzerzhynskyi St., 2/4, Dnipropetrovsk, Ukraine, 49000, tel. +38 (056) 46 95 98, e-mail khalipov@rambler.ru, ORCID 0000-0001-5605-6781

Н. В. Халипова

References

Bosov A.A., Mukhina N.A., Pikh B.P. Pidvyshchennia efektyvnosti roboty transportnoi systemy na osnovi strukturnoho analizu [Improving the efficiency of the transport system based on structural analysis]. Dnipropetrovsk, DNURT Publ., 2005. 200 p.

Bosov A.A., Ilman V.M. Strukturnaya slozhnost sistem [Structural complexity of systems]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 40, pp. 173-179.

Bosov A.A. Funktsii mnozhestv i ikh prilozheniye [Set functions and their application]. Dneprodzerzhinsk, Andrey Publ., 2007. 182 p.

Ilman V.M., Samoylov S.P. Atributivnyye mnozhestvennyye obekty [Attribute multiple objects]. Tezisy VII mezhdunarodnoy nauchno-prakticheskoy konferentsii «Sovremennye informatsionnye tekhnologii na transporte, v promyshlennosti i obrazovanii (18.04-19.04.2013)» [Proc. of . the VIIth Int. Scientific and Practical. Conf. «Contemporary Information Technologies at Transport, Industry and Education»]. Dnіpropetrovsk, 2013, pp. 64-65.

Ilman V.M., Shynkarenko V.Y. Konstruktyvne predstavlennia mnozhynnykh obiektiv ta yikh vlastyvosti [Constructive presentation of multiple objects and their properties]. Problemy prohramuvannia – Programming Problems, 2014, no. 1. Available at: http://eadnurt.diit.edu.ua/jspui/handle/12345 6789/3209 (Accessed 12 May 2015).

Ilman V.M., Skalozub V.V., Shynkarenko V.I. Formalni struktury ta yikh zastosuvannia [Formal structures and their applications]. Dnipropetrovsk, DNURT Publ., 2009. 205 p.

Kasti Dzh. Bolshiye sistemy. Svyaznost, slozhnost i katastrofy [Large systems. Connectivity, complexity and disasters]. Moscow, Mir Publ., 1982. 216 p.

Kurosh A.G. Lektsii po obshchey algebre [Lectures on General Algebra]. Moscow, Fizmatlit Publ., 1973. 162 p.

Mesarovich M., Takakhara Ya. Obshchaya teoriya sistem: matematicheskiye osnovy [General Systems Theory: mathematical foundations]. Moscow, Mir Publ., 1978. 311 p.

Molchanov A.A. Modelirovaniye i proyektirovaniye slozhnykh sistem [Modeling and design of complex systems]. Kyіv, Vishcha shkola Publ., 1988. 359 p.

Nogin V.D. Prinyatiye resheniy pri mnogikh kriteriyakh [Decision-making in many criteria]. Saint-Petersburg, YuTAS Publ., 2007. 104 p.

Orlovskiy P.N., Skvortsov G.P. Sistemnyy analiz problem transportnykh uzlov [System analysis of the transport junctions problems]. Kyіv, Osnova Publ., 2007. 596 p.

Saati T. Prinyatiye resheniy. Metod analiza ierarkhiy [Making decisions. The hierarchy’s analysis method]. Moscow, Radio i svyaz Publ., 1993. 278 p.

Skornyakov L.A. Elementy teorii struktur [Elements of structures theory]. Moscow, Nauka Publ., 1982. 160 p.

Khalipova N.V. Modeliuvannia vzaiemodii kolii ta rukhomoho skladu [Modeling of the track and rolling stock interaction]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 5 (47), pp. 58-69. doi: 10.15802/stp2013/17967.

Khalipova N.V. Obosnovaniye primeneniya diskretnogo printsipa maksimuma v metode faz pri proektirovanii logisticheskikh sistem dostavki gruzov [Use justification of a discrete maximum principle method for the design phase of logistic systems delivery]. Universum: Tekhnicheskiye nauki – Universum: Technical sciences, 2015, no. 1 (14). Available at: http://7universum.com/ ru/tech/archive/item/1891 (Accessed 13 May 2015).

Khalipova N.V. Otsenka effektivnosti funktsionirovaniya mezhdunarodnykh logisticheskikh system [Evaluating the effectiveness of the international logistics systems]. Sbornik statey po materialam ХХХVI mezhdunarodnoy nauchno-prakticheskoy konferentsii «Tekhnicheskiye nauki – ot teorii k praktike» [Proc. of the ХХХVIth Int. Scientific and Practical. Conf. «Technical Science – From Theory to Practise»]. Novosibirsk, 2014, no. 7 (32), pp. 99-115.

Khausdorf F. Teoriya mnozhestv [Set Theory]. Moscow, Leningrad, ONTI Publ., 1937. 306 p.

Shinkarenko V.I., Ilman V.M. Konstruktivno-produktsionnyye struktury i ikh grammaticheskiye interpretatsii. І. Obobshchennaya formalnaya konstruktivno-produktsionnaya struktura [Structurally-productions structure and their grammatical interpretation. I. Generalized formal design and production structure]. Kibernetika i sistemny analiz – Cybernetics and Systems Analysis, 2014, vol. 50, no. 5, pp. 8-16.

Singh D., Ibrahim A.M, Yohanna T, Singh J. An Overview of the Applications of Multiset. Novi Sad Journal of Mathematics, 2007, vol. 37, no. 2, pp. 73-92.

Atkin R.H. Mathematical structure in human affairs. London, Heinemann Publ., 1974. 212 p.

Blizard W. The Development of Multiset Theory. Notre Dame Journal of Formal Logic, 1989, vol. 30, no. 1, pp. 36-66.

Syropoulos A. Mathematic of Multisets. Multiset Processing. Lecture Notes in Computing Science, 2001, vol. 2235, pp. 347-358. doi: 10.1007/3-540-45523-X_17.

How to Cite

Bosov, A. A., Ilman, V. M., & Khalipova, N. V. (2015). MULTIPLE OBJECTS. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, (3(57), 145–161. https://doi.org/10.15802/stp2015/46075

Issue

Section

TRANSPORT AND ECONOMIC TASKS MODELING