THE EFFECT OF CORRUGATED ELEMENTS THICKNESS ON THE DEFLECTED MODE OF CORRUGATED METAL STRUCTURES

Authors

  • V. V. Kovalchuk Dep. «Rolling Stock and Track», Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, I. Blazhkevych St., 12a, Lviv, Ukraine, 79052, tel. +38 (097) 223 72 43, e-mail kovalchuk.diit@mail.ru, ORCID 0000-0003-4350-1756, Ukraine https://orcid.org/0000-0003-4350-1756

DOI:

https://doi.org/10.15802/stp2015/46079

Keywords:

corrugated metal construction, corrugated metal pipe thickness, backfill soil compaction degree, dynamic loading, relative deformations, strain, stress, strength, stability

Abstract

Purpose. The work provides research the deflected mode and calculation the relative deformation of vertical and horizontal diameters of corrugated metal structures (CMS), horizontal ellipse type, and cross section in their interaction with soil backfill depending on the thickness of corrugated metal pipe. Such studies are required for optimal design of CMS, establishing the causes of defects timely, appropriate engineering solutions to improve the bearing capacity of the CMS and reasonable use of funds for their construction or rehabilitation of existing transportation facilities using corrugated metal pipes. Methodology. Stresses and stability calculations of CMS form are conducted using the developed mathematical algorithm in program environment Mathcad 14. In these studies different thickness of corrugated metal pipe were assigned, and further calculations were carried out at the design value of backfill soil compaction degree and magnitude of dynamic loading of railway transport. Findings. From the calculations is determined that the most influence the thickness of the corrugated metal pipe has on the strength in the calculation of the normal stresses and value of the vertical pipe strains. Therefore, the calculated parameters in the design of corrugated metal structures with small filling heights (from 1.2 m to 3 m) above its peak is calculation of the strength by the normal stresses and determination of the vertical deformation of the pipe. Originality. For the first time, calculations of the deflected mode and relative deformations of vertical and horizontal cross-sectional diameters of CMS, horizontal ellipse type in the interaction with soil backfill. The factors complex was taken into account the backfill soil compaction degree, the value of dynamic loading of railway transport and different thickness of corrugated metal pipe. Practical value. The results of the deflected mode of corrugated metal structures such as horizontal ellipse of cross sections can be used by engineers in the bridge probation stations of Railways of Ukraine and Ukravtodor, in the project organizations involved in the design of corrugated metal structures.

Author Biography

V. V. Kovalchuk, Dep. «Rolling Stock and Track», Lviv branch of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, I. Blazhkevych St., 12a, Lviv, Ukraine, 79052, tel. +38 (097) 223 72 43, e-mail kovalchuk.diit@mail.ru, ORCID 0000-0003-4350-1756

В. В. Ковальчук

References

VSN 176-78. Instruktsiya po proyektirovaniyu i postroyke metallicheskikh gofrirovannykh vodopropusknykh trub [VSN 176-78. Instructions for design and construction of corrugated metal pipe culverts]. Moscow, Orgtransstroy Publ., 1979. 131 p.

Gertsog A.A. Gofrirovannyye truby na avtomobilnykh dorogakh [Corrugated pipes on the roads]. Moscow, Gushosdor Publ., 1939. 112 p.

Gnedovskiy V.N. Truby pod zheleznodorozhnymi nasypyami [Pipes under the railway embankments]. Moscow, Transzheldorizdat Publ., 1938. 267 p.

Danilenko E.I., Rybkin V.V. Pravyla rozrakhunkiv zaliznychnoi kolii na mitsnist i stiikist. TsP-0117 [Terms of railway line calculations for strength and stability. TsP -0117]. Kyiv, Transport Ukrainy Publ., 2006. 168 p.

Koval P.M., Babyak I.P., Sitdyikova T.M. Normuvannia pry proektuvanni i budivnytstvi sporud z metalevykh hofrovanykh konstruktsii [Normalization of the design and construction of buildings of corrugated metal structures]. Visnyk Dnipropetrovskoho natsionalnoho universitetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2010, no. 33, pp. 114-117.

Kolokolov N.M., Yankovskiy O.A., Shcherbina K.B., Chernyakhovskaya S.E. Metallicheskiye gofrirovanyye truby pod nasypyami [Metal corrugated pipes under the embankment]. Moscow, Transport Publ., 1973. 120 p.

Novodzinskiy A.L., Kleveko V.I. Uchet vliyaniya tolshchiny gofrorovannogo elementa na prochnost i ustoychivost metallicheskoy vodopropusknoy truby [Consideration of the influence of the corrugated element thickness on the strength and stability of metal culverts]. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Stroitelstvo i arkhitektura [Bulletin of Perm State National Research Polytechnic University. Construction and Architecture], 2012, no. 1, pp. 81-94.

Esmaeili M., Ali Zakeri J., Abdulrazagh P.H. Minimum depth of soil cover above long-span soil-steel railway bridges. Intern. Journal of Advanced Structural Engineering, 2013, vol. 5, issue 1, pp. 1-7. doi:10.1186/2008-6695-5-7.

Handbook of steel drainage and highway construction products. American Iron and Steel Institute. Canada, СSPI Publ., 2002. 470 p.

Kunecki B. Zachowanie sie ortotropowych powlok walcowych w osrodku gruntowym pod statycznym i dynamicznym obciazeniem zewnetrznym: Rozprawa doktorska. Instytut budownictwa Politechniki Wroclawskiej. Raport serii PRE № 14/2006, Wroclaw, 2006. 199 p.

McVay M.C., Papadopoulos P, Bloomquist D., Townsend F.C. Long-term behavior of large-span culverts in cohesive soils. Transportation Research Board, 1993, no. 1415, pp. 40-46.

Machelski Cz. Modelowanie mostowych konstrukcji gruntowo-powlokowych.Wrocław, Dolnoslaskie Wydawnictwo Edukacyjne Publ., 2008. 208 p.

Ahad F.R., Enakoutsa K., Solanki K.N., Tjiptowidjojo Y., Bammann D.J. Modeling the Dynamic Failure of Railroad tank cars using a physically motivated internal state variable plasticity/damage nonlocal model. Modelling and Simulation in Engineering, 2013, vol. 2013, pp. 1-11. doi: 10.1155/2013/815158.

Pettersson L., Sundquist H. Design of soil steel composite bridges. Stockholm, KTH Royal Institute of Technology Publ., 2007. 98 р.

Saat M.R., Barkan C.P.L. Generalized railway tank car safety design optimization for hazardous materials transport: Addressing the trade-off between transportation efficiency and safety. Journal of Hazardous Materials, 2011, no. 189 (1-2), pp. 62-68. doi:10.1016/j.jhazmat.2011.01.136.

Borchevskiy S.V., Petrenko V.D., Tiutkin O.L., Kulazhenko Ye.Yu., Kulazhenko O.M. Scintific evidence for walls fastening technologies of working trench by the special method «Slurry wall» for shallow subways stations. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2014, no. 6 (54), pp. 154-163. doi 10.15802/stp2014/33740.

Sharma S., Hardcastle J.H. Evaluation of culvert deformations using the finite element method. Transportation Research Board. Washington, 1993, no. 1415, pp. 32-39.

Weltschev M., Schwarzer S., Otremba F. Comparison of the operating life of tank containers, tank vehicles and rail tank cars for the carriage of dangerous goods in practice, analysis of causes of damage. Chem. Engineering Transactions, 2013, no. 31, pp. 559-564.

Wysokowski A., Janusz L. Mostowe konstrukcje gruntowo – powlokowe. Laboratoryjne badania niszczace. Awarie w czasie budowy i eksploatacji. Zapobieganie-Diagnostyka-Naprawy-RekonstrukcjeXXIII Konferencja Naukowo-Techniczna (23.05.–26.05.2007).Szczecin-Międzyzdroje, 2007, pp. 541-550.

How to Cite

Kovalchuk, V. V. (2015). THE EFFECT OF CORRUGATED ELEMENTS THICKNESS ON THE DEFLECTED MODE OF CORRUGATED METAL STRUCTURES. Science and Transport Progress, (3(57), 199–207. https://doi.org/10.15802/stp2015/46079

Issue

Section

TRANSPORT CONSTRUCTION