INTERNATIONAL LOGISTICS SYSTEMS DESIGN AND EFFECTIVENESS EVALUATION

N. V. Khalipova

Abstract


Purpose. In the paper the question of the  development of a methodological approach to the determination of logistics systems’ performance and grounding of the most effective goods’ delivery schemes, based on the theory of functions and sets of multiple objects, vector optimization approaches and discrete maximum principle for multi-stage processes (phase method) is considered. Methodology. To achieve the goals of the research, the model of logistic system represented by multiple object that defined by the structure and content. The object is represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists) and inhomogeneous sets (sequences, corteges), which at each stage of cargo delivery present sets of technological operations of their processing, choices and decisions algorithms. Multiple structure of objects is constructive three, consisting of the carrier, signatures and axiomatic. To determine the effective scheme of delivery, applied discrete maximum principle using vector optimization criterion. Findings. In this article, logistics system of delivery is presented in the form of a multi-stage (phase) of the process. Each stage reviews a plurality of discrete activities sets, which includes the possible technology cycles of operations in goods handling. At each stage of a multi-phase delivery process from the supplier to the consumer, these sets are different. Considered a model example solving the problem of vector optimization options for delivery of goods by the road in the international logistics system for the five-step process. Optimization performed on the basis of three indicators.  Originality. In this paper, the choice of the most effective way of delivery goods produced using the theory of functions and sets of multiple objects, using the discrete maximum principle for multi-stage processes, based on the vector optimization criterion. At each of its stages are formed a plurality of valid solutions as discrete sets of technological cargo handling operations cycles. Practical value. The proposed approach to the modeling of logistic delivery goods systems on the basis of the theory of functions and sets of multiple objects, vector optimization approaches and discrete maximum principle for multi-stage processes (phase method) makes it possible to assess the efficiency of delivery in logistic system’s modeling. The choose the most effective delivery option, based on vector optimization criterion become more possible.


Keywords


efficiency of logistics systems; discrete maximum principle; multiple objects; vector optimization; efficiency of delivery

Full Text:

PDF

References


Bosov A.A., Ilman V.M., Khalipova N.V. Mnozhestvennyye obekty [Multiple objects]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2015, no. 3 (57), pp. 145-161.

Bosov A.A., Ilman V.M., Strukturnaya slozhnost sistem [Structural complexity of systems]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 40, pp. 173-179.

Bosov A.A. Funktsii mnozhestv i ikh primeneniye [Functions sets and their applications].Dneprodzerzhinsk, Izdatelskiy dom Andrey Publ., 2007. 182 p.

Krykavskyi Ye.V. Lohistyka. Osnovy teorii [Logistics. Fundamentals of the theory]. Lviv, Intelekt+, Intelekt-Zakhid Publ., 2006. 456 p.

Lyan-Tsen F., Chu-Sen V., Propoya A.I. Diskretnyy printsip maksimuma. Optimizatsiya mnogostupenchatykh protsessov [Discrete maximum principle. Optimization of multistage processes].Moscow, Mir Publ., 1967. 181 p.

Moiseeva N.K. Ekonomicheskiye osnovy logistiki [Economic fundamentals of logistics].Moscow, INFRA–M Publ., 2014. 528 p. doi: 10.12737/826.

Ponomarova Yu.V. Lohistyka [Logistics]. Kyiv, TsNL Publ., 2003. 189 p.

Semenenko A.I., Sergeev V.I. Logistika. Osnovy teorii [Logistics. Fundamentals of the theory]. Saint-Petersburg, Soyuz Publ., 2001. 544 p.

Trydid O.M. Lohistyka [Logistics]. Kyiv, Znannia Publ., 2008. 566 p.

Khalipova N.V. Modelirovaniye logisticheskikh sistem mezhdunarodnykh perevozok [Modeling logistics systems of international shipments]. Vestnik Vostochno-ukrainskogo natsionalnogo universiteta imeni V. Dalya [Bulletin of East-Ukrainian National University named after V. Dahl], 2013, no. 5 (194), part 2, pp. 73-80.

Khalipova N.V. Otsenka effektivnosti funktsionirovaniya mezhdunarodnykh logisticheskikh sistem [Assessment of efficiency of functioning of international logistics systems]. Sbornik statey po materialam XXXVI mezhdunarodnoy nauchno-prakticheskoy konferentsii: Tekhnicheskiye nauki – ot teorii k praktike [Collection of Scientific Articles on Materials of the XXXVI International Scientific-Practical Conf.: Engineering – from theory to practice].Novosibirsk, SibAK Publ., 2014, no. 7(32), pp. 99-115.

Singh D., Ibrahim A.M., Yohanna T., Singh J. An Overview of the Applications of Multiset. Novi Sad Journal of Mat, 2007, vol. 37, no. 2, pp. 73-92.

Kengpol A., Tuammee S., Tuominen M. The development of a framework for route selection in multimodal transportation. The Intern. Journal of Logistics Management, 2014, vol. 25, issues 3, pp. 581-610. doi: 10.1108/ijlm-05-2013-0064.

Lambert D.M. Supply Chain Management: Processes, Partnerships, Performance. Ponte Vedra Beach, Florida, Supply Chain Management Institute Publ., 2014, 463 p.

McShaine E.J. On multipliers for Lagrang problems. Amer. Journal Math. 1939, vol. 61, issue 4, pp. 809-819. doi: 10.2307/2371626.

Syropoulos A. Mathematic of Multisets. Multiset Processing. Lecture Notes in Computing Sci. 2001, vol. 2235, pp. 347-358. doi: 10.1007/3-540-45523-x_17.


GOST Style Citations


  1. Босов, А. А. Множественные объекты / А. А. Босов, В. М. Ильман, Н. В. Халипова // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун–ту залізн. трансп. – 2015. – № 3 (57). – С. 145–161.
  2. Босов, А. А. Структурная сложность систем / А. А. Босов, В. М. Ільман // Вісн. Дніпропетр. нац. ун–ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2012. – Вип. 40. – С. 173–179.
  3. Босов, А. А. Функции множеств и их применение : монография / А. А. Босов – Днепродзержинск : Андрей, 2007. – 182 с.
  4. Крикавский, Є. В. Логістика. Основи теорії : підручник / Є. В. Крикавский. – Львів : ІНТЕЛЕКТ : Інтелект-Захід, 2006. – 456 с.
  5. Лянь-Цэнь, Ф. Дискретный принцип максимума. Оптимизация многоступенчатых процессов / Ф. Лянь-Цэнь, В. Чу-Сен ; под ред. А. И. Пропоя ; [пер. с англ. В. И. Кузьмина, Х. Л. Мучника]. – Москва : Мир, 1967. – 181 с.
  6. Моисеева, Н. К. Экономические основы логистики : учеб. для вузов / Н. К. Моисеева. – Москва : ИНФРА-М, 2014. – 528 с. doi: 10.12737/826.
  7. Пономарьова, Ю. В. Логістика : навч. посіб. / Ю. В. Пономарьова. – Kиїв : ЦНЛ, 2003. – 189 с.
  8. Семененко, А. И. Логистика. Основы теории : учеб. для вузов / А. И. Семененко, В. И. Сергеев. – Санкт–Петербург : Союз, 2001. – 544 с.
  9. Тридід, О. М. Логістика : навч. посіб. / О. М. Тридід. – Київ : Знання, 2008. – 566 с.
  10. Халипова, Н. В. Моделирование логистических систем международных перевозок / Н. В. Халипова // Вістн. Східно-Укр. нац. ун–ту ім. В. Даля. – 2013. – № 5 (194), ч. 2. – C. 73–80.
  11. Халипова, Н. В. Оценка эффективности функционирования международных логистических систем / Н. В. Халипова // Техн. науки – от теории к практике : сб. ст. по материалам ХХХVI междунар. науч.-практ. конф. / СибАК – Новосибирск, 2014. – № 7(32). – С. 99–115.
  12. An Overview of the Applications of Multiset / D. Singh, A. M. Ibrahim, T. Yohanna, J. Singh //NoviSad J. of Mat. – 2007. – Vol. 37, № 2. – P. 73–92.
  13. Kengpol, A. The development of a framework for route selection in multimodal transportation / A. Kengpol,S. Tuammee, M. Tuominen // The Intern. J. of Logistics Management. – 2014. – Vol. 25. – Iss. 3. – P. 581–610. doi: 10.1108/ijlm-05-2013-0064.
  14. Lambert, D. M. Supply Chain Management: Processes, Partnerships, Performance / D. M. Lambert. –Ponte Verde Beach,Florida: Supply Chain Management Institute, 2014. – 463 p.
  15. McShaine, E. J. On multipliers for Lagrange problems / McShaine E. J. // Amer. J. Math. – 1939. – Vol. 61. – Iss. 4. – P. 809–819. doi: 10.2307/2371626.
  16. Syropoulos, A. Mathematic of Multisets / A. Syropoulos // Multiset Processing. Lecture Notes in Computing Sci. – 2001. – Vol. 2235. – P. 347–358. doi: 10.1007/3-540-45523-x_17.


DOI: https://doi.org/10.15802/stp2015/49222

 

Cited-by:

1. DEVELOPMENT OF RAILWAY TOURISM IN UKRAINE AS MEANS OF AVAILABLE REST ORGANIZATION
L. V. Martseniuk, Yu. M. Proskurnia
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 5(59)  First page: 16  Year: 2015  
doi: 10.15802/stp2015/55347



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)