DOI: https://doi.org/10.15802/stp2015/57031

DECREASING OF MECHANISMS DYNAMIC LOADING AT THE TRANSIENT STATE

V. S. Loveikin, Yu. O. Romasevich

Abstract


Purpose. It is necessary to select modes of motion to reduce the dynamic loads in the mechanisms. This choice should be made on optimization basis. The purpose of research is to study methods of synthesis regimes of mechanisms and machines motion that provide optimal modes of movement for terminal and integral criteria. Methodology. For research the one-mass dynamic model of the mechanism has been used. As optimization criteria the terminal and comprehensive integral criteria were used. The stated optimization problem has been solved using dynamic programming and variational calculation. The direct variation method, which allowed finding only approximate solution of the original problem of optimal control, has been used as well. Findings. The ways of ensuring the absolute minimum of terminal criterion have been set for each method of problem solving. The stated characteristics show softness changes of kinematic functions during braking of mechanism. They point to the absolute minimum of adopted terminal criterion in the calculation. Originality. It is necessary to introduce new variables in the system equations during the solving of optimal control problems using dynamic programming to achieve an absolute minimum of terminal criteria. In general, to achieve a minimum of n-order terminal criterion an optimization problem should find relatively (n+1)-th order function. When optimization problems is solving by variational calculation in order to ensure a minimization of n-th order terminal criterion by selecting the appropriate boundary conditions, it is necessary to solve the Euler-Poisson 2(n+1)-th order equation (subject to symmetric setting boundary conditions). It is a necessary condition for an extremum of the functional with the (n+1)-th order integrant. Practical value. Minimizing of adopted terminal criterion in the calculation allows eliminate the brunt in kinematic gearing of mechanisms, which increases their operational life. In addition, the reducing of the acceleration increasing intensity of system driving mass (for example, rotor of electric motor) allows reducing undesirable energy losses in a drive.


Keywords


optimal control; terminal criterion; dynamical programming; variation calculation; boundary problem

References


Bobrovskiy V.I., Dorosh A.S. Optimizatsiya rezhimov tormozheniya ottsepov raschetnoy gruppy sostava [The optimization of retarding regimes within the particular group of cuts]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 1 (43), pp. 103-112. doi: 10.15802/stp2013/9582

Volkov D.P. Dinamika i prochnost odnokovshovykh ekskavatorov [Dynamics and strength of single-bucket excavators]. Moscow, Mashinostoroeniye Publ., 1965. 462 p.

Gerasimyak R.P., Naydenko Ye.V. Nagruzki v kinematicheskikh peredachakh dvukhmassovoy elektromekhanicheskoy sistemy v protsesse tormozheniya [The loads in the kinematic transmission of two-mass electromechanical system in the braking process]. Elektrotekhnicheskiye i kompyuternyye sistemy – Electrotechnic and Computer Systems, 2015, no. 17 (93), pp.15-22.

Grigorov O.V. Sovershenstvovaniye rabochikh kharakteristik kranovykh mekhanizmov. Dokt Diss. [Improving of operational characteristics of crane mechanisms. Doct. Diss.], 1995. 386 p

Sheffler M., Dresig Kh., Kurt F., Runov M.M., Fedoseyev V.N., Aleksandrova M.P. Gruzopodemnyye krany [Climbing cranes]. Moscow, Mashinostoroeniye Publ., 1981. 287 p.

Lobov N.A. Dinamika gruzopodemnykh kranov [Dynamics of climbing cranes]. Moscow, Mashinostoroeniye Publ., 1987. 160 p.

Loveikin V.S., Romasevych Yu.O. Analiz ta syntez optymalnoho keruvannia rukhom vantazhopidiomnoho krana priamym variatsiinym metodom [Analysis and synthesis of optimum control of movement of the crane using direct variational method]. Naukovyi visnyk natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: «Tekhnika ta enerhetyka APK» [Scientific Bulletin of national University of life and environmental Sciences of Ukraine. Series: «Technology and energy agriculture»], 2014, vol. 196, p. 1, pp. 129-139.

Loveikin V.S., Romasevych Yu.O. Optymizatsiia rezhymiv rukhu kranovykh mekhanizmiv [Optimization of movement modes of crane mechanisms]. Kyiv, Nizhyn, PP Lysenko M.M. Publ., 2011. 307 p.

Raksha S.V., Kuropyatnik A.S., Kurka A.A. Obosnovaniye sposobov snizheniya energopotrebleniya podvesnykh kanatnykh dorog [Substantiation of ways of decrease in power consumption of ropeways]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu – Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2014, no. 1 (49), pp. 125-131. doi: 10.15802/stp2014/22677

Bellman R. Dynamic programming. Princeton, Princeton University Press Publ., 1957. 400 p.

Kolovsky M.Z., Evgrafov A.N., Semenov Yu.A., Slousch A.V. Advanced theory of Mechanisms and Machines. Berlin, Springer Publ., 2000. 396 p. doi: 10.1007/978-3-540-46516-4

Clarke F. Functional Analysis, Calculus of Variations and Optimal Control. Berlin, Springer Publ., 2013. 606 p. doi: 10.1007/978-1-4471-4820-3

Genta G. Vibration Dynamics and Control. New York, Springer Publ., 2009. 806 p. doi: 10.1007/978-0-387-79580-5.

Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. Dallas, Dover Publications Publ., 2000. 1151 p.

Seeler K.A. System dynamics: an introduction for mechanical engineers. New York, Springer Publ., 2014. 667 p.

Vulfson I. Dynamics of cyclic machines. New York, Springer Publ., 2015. 390 p. doi: 10.1007/978-3-319-12634-0


GOST Style Citations


1. Бобровский, В. И. Оптимизация режимов торможения отцепов расчетной группы состава / В. И. Бобровский, А. С. Дорош // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. – 2013. – № 1 (43). – С. 103–112. doi: 10.15802/stp2013/9582.

2. Волков, Д. П. Динамика и прочность одноковшовых экскаваторов / Д. П. Волков. – Москва : Машиностороение, 1965. – 462 с.

3. Герасимяк, Р. П. Нагрузки в кинематических передачах двухмассовой электромеханической системы в процессе торможения / Р. П. Герасимяк, Е. В. Найденко // Электротехн. и компьютер. системы. – 2015. – № 17 (93). – С.15–22.

4. Григоров, О. В. Совершенствование рабочих характеристик крановых механизмов : дис. … д-ра техн. наук : 05.05.05 / Григоров Отто Владимирович ; Харьк. гос. политехн. ун-т. – Харьков, 1995. – 386 с. – Библиогр.: с. 357–377.

5. Грузоподъемные краны. Кн. 2 / М. Шеффлер, Х. Дресиг, Ф. Курт ; [пер. с нем. М. М. Рунов, В. Н. Федосеев] ; под ред. М. П. Александрова. – Москва : Машиностроение, 1981. – 287 с.

6. Лобов, Н. А. Динамика грузоподъемных кранов / Н. А. Лобов. – Москва : Машиностроение, 1987. – 160 с.

7. Ловейкін, В. С. Аналіз та синтез оптимального керування рухом вантажопідйомного крана прямим варіаційним методом / В. С. Ловейкін, Ю. О. Ромасевич // Наук. вісн. нац. ун-ту біоресурсів і природокористування України. Серія : «Техніка та енергетика АПК». – 2014. – Вип. 196, ч. 1. – С. 129–139.

8. Ловейкін, В. С. Оптимізація режимів руху кранових механізмів / В. С. Ловейкін, Ю. О. Ромасевич. – Київ. – Ніжин : ПП Лисенко М. М., 2011. – 307 с.

9. Ракша, С. В. Обоснование способов снижения энергопотребления подвесных канатных дорог / С. В. Ракша, А. С. Куропятник, А. А. Курка // Наука та прогрес трансп. Вісн. Дніпропетр. нац. ун-ту залізн. трансп. – 2014. – № 1 (49). – С. 125–131. doi: 10.15802/stp2014/22677.

10. Bellman, R. Dynamic programming / R. Bellman. – Princeton : Princeton university press, 1957. – 400 p.

11. Advanced theory of Mechanisms and Machines / M. Z. Kolovsky, A. N. Evgrafov, Yu. A. Se menov, A. V. Slousch. – Berlin : Springer, 2000. – 396 p. doi: 10.1007/978-3-540-46516-4.

12. Clarke, F. Functional Analysis, Calculus of Variations and Optimal Control / F. Clarke. – New York : Springer, 2013. – 606 p. doi: 10.1007/978-1-4471-4820-3.

13. Genta, G. Vibration Dynamics and Control / G. Genta. – New York : Springer, 2009. – 806 p. doi: 10.1007/978-0-387-79580-5.

14. Korn, G. A. Mathematical handbook for scientists and engineers / G. A. Korn, T. M. Korn. – Dallas : Dover Publications, 2000. – 1151 p.

15. Seeler, K. A. System dynamics: an introduction for mechanical engineers / K. A. Seeler. – New York : Springer, 2014. – 667 p.

16. Vulfson, I. Dynamics of cyclic machines / I. Vulfson. – New York : Springer, 2015. – 390 p. doi: 10.1007/978-3-319-12634-0.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)