IMPLEMENTATION MODEL OF MOTOR TRACTION FORCE OF MAGLEV TRAIN

V. O. Polyakov, M. M. Khachapuridze

Abstract


Purpose. Traction force implementation (TFI) by the motor of magnetic levitation train (MLT) occurs in the process of electric-to-kinetic energy transformation at interaction of inductor and armature magnetic fields. Ac-cordingly, the aim of this study is to obtain a correct description of such energy transformation. Methodology. At the present stage, a mathematical and, in particular, computer simulation is the main and most universal tool for analysis and synthesis of processes and systems. At the same time, radical advantages of this tool make the precision of selection of a particular research methodology even more important. It is especially important for such a large and complex system as MLT. Therefore the special attention in the work is given to the rationale for choosing the research paradigm selective features. Findings. The analysis results of existing TFI process model versions indicate that each of them has both advantages and disadvantages. Therefore, one of the main results of this study was the creation of a mathematical model for such process that would preserve the advantages of previous versions, but would be free from their disadvantages. The work provides rationale for application (for the purposes of research of train motor TFI) of the integrative holistic paradigm, which assimilates the advantages of the theory of electric circuit and magnetic field. Originality. The priority of creation of such paradigm and corresponding version of FI model constitute the originality of the research. Practical value. The main manifestation of practical value of this research in the opportunity, in case of use of its results, for significant increase in efficiency of MLT dynamic studies, on the condition that their generalized costs will not rise.


Keywords


magnetic levitation (maglev) train; linear synchronous motor; traction force implementation; integra-tive research paradigm; mathematical model

References


Bessonov L.A. Teoreticheskiye osnovy elektrotekhniki: Elektricheskiye tsepi [Theoretical foundations of electrical engineering: Electrical circuits].Moscow, Vysshaya shkola Publ., 1996. 578 p.

Biryukov V.A., Danilov V.A. Magnitnoye pole pryamougolnoy katushki s tokom [Magnetic field of the square coil with a current]. Zhurnal tekhnicheskoy fiziki – Journal of Technical Physics, 1961, vol. XXXI, no. 4, pp. 428-435.

Voldek A.I. Elektricheskiye mashiny [Electric machines]. Saint-Petersburg, Energiya Publ., 1984. 832 p.

Dzenzerskiy V.A., Omelyanenko V.I., Vasilyev S.V., Matin V.I., Sergeyev S.A.Vysokoskorostnoy magnitnyy transport s elektrodinamicheskoy levitatsiey [High-speed magnetic transport with electrodynamic levitation].Kiev, Naukova dumka Publ., 2001. 479 p.

Kopylov I.P. Matematicheskoye modelirovaniye elektricheskikh mashin [Mathematical modeling of electrical machines].Moscow, Vysshaya shkola Publ., 2001. 327 p.

Kron G. Primeneniye tenzornogo analiza v elektrotekhnike [Application of tensor analysis in electrical engineering].Moscow, Saint-Petersburg, Gosenergoizdat Publ., 1955. 275 p.

Lvovich A.Yu. Elektromekhanicheskiye sistemy [Electromechanical systems]. Saint-Petersburg, LGU Publ., 1989. 296 p.

Polyakov V.A., Khachapuridze N.M. Dinamika tyagovoy podsistemy magnitolevitiruyushchego poyezda (polevaya paradigma issledovaniya) [Dynamics of traction subsystem in the magnetic levitation (maglev) train (field research paradigm]. Naukovyi visnyk Khersonskoi morskoi akademii – Bulletin of Kherson Maritime Academy, 2013, no. 1 (8), pp. 258-266.

Polyakov V.A., Khachapuridze N.M. Dinamika tyagovoy elektromagnitnoy podsistemy magnitolevitiruyushchego poyezda [Dynamics of traction of electromagnetic subsystem in the magnetic levitation (maglev) train]. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriia: «Matematychne modeliuvannia. Informatsiini tekhnolohii. Avtomatyzovani systemy upravlinnia [Bulletin of Kharkiv National named after University V. N. Karazin. Series: «Mathematical modeling. Information Technology. Automated control systems»], 2012, vol. 19, no. 1015, pp. 268-273.

Rashevskiy P.K. Rimanova geometriya i tenzornyy analiz [Riemann geometry and tensor analysis].Moscow, Nauka Publ., 1967. 644 p.

Sipaylov G.A., Kononenko Ye.V., Khorkov K.A. Elektricheskiye mashiny (spetsialnyy kurs) [Electric machines (special course)].Moscow, Vysshaya shkola Publ., 1987. 287 p.

Azukizava T. Optimum linear synchronous motor design for high speed ground transportation. IEEE Power Engineering and Review, 1983, vol. PER-3, issue 10, p. 29. doi: 10.1109/MPER.1983.5520073.

Chong Y., Kane W. Maglev train’s development prospects in China. Maglev Train in China Journal, 2016, no. 2, pp. 75-90.

Fujiwara S. Superconducting maglev and its electromagnetic characteristics. SAE Technical Paper Series, 1995, SAE 95-1922, pp. 1-6. doi:10.4271/951922

Lakhavani S.T., Dawson G.E. Study of a liner synchronous motor for high speed transport applications. Vehicular Technology Conf. 34th IEEE (21.05-23.05.1984). Pittsburg, 1984. pp. 220-225. doi: 10.1109/VTC.1984.1623266.

Lee K.B., Kim J.C. Study on Energy Efficiency Analysis by Maglev Trains. Electrical and Electronic Engineering. Advanced Science and Technology Letters, 2015, vol. 118, pp. 48-53.

Matsuoka K. Multi-phase current-fed inverter-driven linear motor and its application to the guided ground transportation system. The Proc. IPEC.Tokyo, 1990, vol. 1, pp. 604-611.

Russell J., Cohn R. List of maglev trains proposals.Johannesburg, Book on demand Publ., 2013. 135 p.

Xudong W., Shiying Y., Zhaoan W. Three Dimensional Electromagnetic Field Equations and General Problems with Definitive Solution in Linear Motor Anisotropic Media. Transacti of China Electrotechn, 2006, vol. 21, no. 6, pp. 59-64.

Zhigang L., Zhiqiang L., Xiaolong L. Maglev Trains.Berlin, Springer Publ., 2015, 215 p. doi: 10.1007/978-3-662-45673-6.


GOST Style Citations


  1. Бессонов, Л. А. Теоретические основы электротехники: Электрические цепи / Л. А. Бессонов. – Москва : Высш. шк., 1996. – 578 с.
  2. Бирюков, В. А. Магнитное поле прямо-угольной катушки с током / В. А. Бирюков, В. А. Данилов // Журн. техн. физики. – 1961. – Т. XXXI, № 4. – С. 428–435.
  3. Вольдек, А. И. Электрические машины / А. И. Вольдек. – Ленинград : Энергия, 1984. – 832 с.
  4. Высокоскоростной магнитный транспорт с электродинамической левитацией / В. А. Дзензерский, В. И. Омельяненко, С. В. Васильев [и др.]. – Киев : Наук. думка, 2001. – 479 с.
  5. Копылов, И. П. Математическое моделирование электрических машин / И. П. Копылов. – Москва : Высш. шк., 2001. – 327 с.
  6. Крон, Г. Применение тензорного анализа в электротехнике / Г. Крон. – Москва ; Ленинград : Госэнергоиздат, 1955. – 275 с.
  7. Львович, А. Ю. Электромеханические системы / А. Ю. Львович. – Ленинград : Изд-во ЛГУ, 1989. – 296 с.
  8. Поляков, В. А. Динамика тяговой подсистемы магнитолевитирующего поезда (полевая парадигма исследования) / В. А. Поляков, Н. М. Хачапуридзе // Наук. вісн. Херсон. морс. акад. – 2013. – № 1 (8). – С. 258–266.
  9. Поляков, В. А. Динамика тяговой электромагнитной подсистемы магнитолевитирующего поезда / В. А. Поляков, Н. М. Хачапуридзе // Вісн. Харк. нац. ун-ту ім. В. Н. Каразіна. Серія: «Математичне моделювання. Інформ. технології. Автоматиз. системи управління». – Харків, 2012. – Вип. 19. – С. 268–273.
  10. Рашевский, П. К. Риманова геометрия и тензорный анализ / П. К. Рашевский. – Москва : Наука, 1967. – 644 с.
  11. Сипайлов, Г. А. Электрические машины (специальный курс) / Г. А. Сипайлов, Е. В. Кононенко, К. А. Хорьков. – Москва : Высш. шк., 1987. – 287 с.
  12. Azukizava, T. Optimum linear synchronous motor design for high speed ground transportation / T. Azukizava // IEEE Power Engineering and Review. – 1983. – Vol. PER-3. – Iss. 10. – P. 29. doi: 10.1109/MPER.1983.5520073.
  13. Chong, Y. Maglev train’s development prospects inChina/ Y. Chong, W. Kane // Maglev Train in China J. – 2016. – № 2. – P. 75–90.
  14. Fujiwara, S. Superconducting maglev and its electromagnetic characteristics / S. Fujiwara // SAE Technical Paper Series. – 1995. – SAE 95-1922. – P. 1–6. doi:10.4271/951922.
  15. Lakhavani, S. T. Study of a liner synchronous motor for high speed transport applications / S. T. Lakhavani, G. E. Dawson // Vehicular Technology Conf. 34th IEEE (21.05–23.05.1984). – Pittsburg, 1984. – P. 220–225. doi: 10.1109/VTC.-1984.1623266.
  16. Lee, K. B. Study on Energy Efficiency Analysis by Maglev Trains / K. B Lee, J. C. Kim // Electrical and Electronic Engineering. Advanced Science and Technology Letters. – 2015. – Vol. 118. – P. 48–53.
  17. Matsuoka, K. Multi-phase current-fed inverter-driven linear motor and its application to the guided ground transportation system / K. Matsuoka // The Proc. IPEC. –Tokyo, 1990. – Vol. 1. – P. 604–611.
  18. Russell, J. List of maglev trains proposals / J. Russell, R. Cohn. –Johannesburg: Book on demand, 2013. – 135 p.
  19. Xudong, W. Three Dimensional Electromagnetic Field Equations and General Problems with Definitive Solution in Linear Motor Anisotropic Media / W. Xudong, Y. Shiying, W. Zhaoan // Transacti of China Electrotechn. – 2006. – Vol. 21, № 6. – P. 59–64.
  20. Zhigang, L. Maglev Trains / L. Zhigang, L. Zhiqiang, L. Xiaolong. –Berlin: Springer, 2015. – 215 p. doi: 10.1007/978-3-662-45673-6.


DOI: https://doi.org/10.15802/stp2016/77909

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)