THE ASSESSMENT MODELS OF AIR POLLUTION DURING TRANSPORTATION OF BULK CARGO

M. M. Biliaiev, M. O. Oladipo

Abstract


Purpose. The scientific work is concentrated on development of 3D, 2D numerical models for the prediction of atmospheric pollution during transport of bulk cargo in the railway car. Methodology. To solve this problem numerical models were developed, based on the use of the motion equations of inviscid incompressible fluid and mass transfer, to determine the field of wind velocity near the cars and dispersion of dust in the atmosphere. For the numerical integration of the pollutant transport equation implicit alternating-triangular difference scheme was used. When constructing a difference scheme splitting of the transport equation is carried out that allows us to construct an efficient algorithm for solving a differential problem. Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of point-to-point computation, which provides a simple numerical implementation of splitting equations. For numerical integration of the 3D equation for the velocity potential method of Richardson is applied. For numerical integration of the 2D equation for the velocity potential the method of total approximation is applied. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models a computational experiment to assess the level of air pollution when demolition of coal dust from the gondola car was carried out. Findings. 3D, 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dust pollution dispersion in the atmosphere during transportation of bulk cargo, but require small costs of the computer time in the practice at the low and medium power machines. These models are used for serial calculations of various situations of scenarios related to issues of environmental protection and pollution intensity diagnostics for different weather conditions. Computational calculations to determine pollutant concentrations and formation of pollution zone near the cars with bulk cargo in «microscale» scale were submitted. Originality. 3D, 2D numerical models were created. They allow taking into account the relevant factors, influencing the process of pollutants dispersion in the atmosphere, and formation of the pollution zone during transport of bulk cargo by rail. Practical value. Efficient numerical models «diagnostic models» for rapid calculation of the atmosphere pollution level during transportation of bulk cargo by rail were considered. Models can be used in the development of environmental protection measures at the operation of rail transport. Proposed model allows calculating 3D, 2D hydrodynamics of wind flow and mass transfer process of pollutants in the atmosphere.

Keywords


air pollution; railway transport; bulk cargo transportation; numerical simulation

References


Belov, I. A. (1983). Vzaimodeystviye neravnomernykh potokov s pregradami. Leningrad: Mashinostroyeniye.

Belyayev, N. N., Gunko, Ye.Yu, & Mashikhina, P. B. (2013). Matematicheskoye modelirovaniye v zadachakh ekologicheskoy bezopasnosti i monitoringa chrezvychaynykh situatsiy. Dnepropetrovsk: Aktsent PP.

Belyayev, N. N., & Karpo, A. A. (2016). Modelirovaniye protsessa snosa ugolnogo kontsentrata iz poluvagonov. Zbirnyk naukovykh prats «Naukovyi visnyk budivnytstva», 1(83), 196-199.

Berlyand M. Ye., (1985). Prognoz i regulirovaniye zagryazneniya atmosfery. Leningrad: Gidrometeoizdat.

Berlyand, M. Ye. (1975). Sovremennyye problemy atmosfernoy diffuzii i zagryazneniya atmosfery. Leningrad: Gidrometeoizdat.

Bruyatskiy, Ye. V. (2000). Teoriya atmosfernoy diffuzii radioaktivnykh vybrosov. Kiev: Institut gidromekhaniki NAN Ukrainy.

Gusev, N., & Belyaev, V. (1991). Radioaktivnyye vybrosy v biosfere. Moscow: Energoatomizdat. Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka.

Mashikhina, P. B. . Modelirovaniye rasprostraneniya primesi v atmosfere s uchetom relefa mestnosti. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana, 27, 138-142.

Rudakov, D. V. (2004). Model rasseivaniya primesi v prizemnom sloye atmosfery nad poverkhnostyu so slozhnym relefom. Visnyk Dnipropetrovskoho natsionalnoho universytetu. Seriia: Mekhanika, 8(1), 89-97.

Samarskiy, A. A. (1983). Teoriya raznostnykh skhem. Moscow: Nauka.

Svetlichnaya, S. D. (2011). Otsenka poluchennoy toksodozy pri rasprostranenii pervichnogo oblaka toksicheskogo veshchestva. Zbirnyk naukovykh prats «Problemy nadzvychainykh sytuatsii», 13, 127-132.

Uork, K., Uorner, S., (1980). Zagryazneniye vozdukha. Istochniki i kontrol. Moscow: Mir.

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoye modelirovaniye rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka.

Biliaiev, M. (2011). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security Series C: Environmental Security, 87-91. doi:10.1007/978-94-007-1359-8_15


GOST Style Citations


  1. Белов, И. А. Взаимодействие неравномерных потоков с преградами / И. А. Белов. – Ленинград : Машиностроение, 1983. – 144 с.
  2. Беляев, Н. Н. Математическое моделирование в задачах экологической безопасности и мониторинга чрезвычайных ситуаций : монография / Н. Н. Беляев, Е. Ю. Гунько, П. Б. Машихина. – Днепропетровск : Акцент ПП, 2013. – 159 с.
  3. Беляев, Н. Н. Моделирование процесса сноса угольного концентрата из полувагонов / Н. Н. Беляев, А. А. Карпо // Наук. вісн. буд-ва : зб. наук. пр. / Харк. нац. ун-т буд-ва та архі-тектури. – Харків, 2016. – Вип. 1 (83). – С. 196–199.
  4. Берлянд, М. Е. Прогноз и регулирование загрязнения атмосферы / М. Е. Берлянд. – Ленинград : Гидрометеоиздат, 1985. – 273 с.
  5. Берлянд, М. Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы / М. Е. Берлянд. – Ленинград : Гидрометеоиздат, 1975. – 448 с.
  6. Бруяцкий, Е. В. Теория атмосферной диффузии радиоактивных выбросов / Е. В. Бруяцкий. – Киев : Ин-т гидромеханики НАН Украины, 2000. – 443 с.
  7. Гусев, Н. Г. Радиоактивные выбросы в биосфере / Н. Г. Гусев, В. А. Беляев. – Москва : Энергоатомиздат, 1991. – 257 с.
  8. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
  9. Машихина, П. Б. Моделирование распространения примеси в атмосфере с учетом рельефа местности / П. Б. Машихина // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2009. – Вип. 27. – С. 138–142.
  10. Рудаков, Д. В. Модель рассеивания примеси в приземном слое атмосферы над поверхностью со сложным рельефом / Д. В. Рудаков // Вісн. Дніпропетр. нац. ун-ту. Серія: Механіка. – Дніпропетровськ, 2004. – № 6. – Вип. 8, т. 1. – С. 89–97.
  11. Самарский, А. А. Теория разностных схем / А. А. Самарский. – Москва : Наука, 1983. – 616 с.
  12. Светличная, С. Д. Оценка полученной токсодозы при распространении первичного облака токсического вещества / С. Д. Светличная // Проблеми надзвичайних ситуацій : зб. наук. пр. / Нац. ун-т цив. захисту України. – Харків, 2011. – Вип. 13. – С. 127–132.
  13. Уорк, К. Загрязнение воздуха. Источники и контроль / К. Уорк, С. Уорнер. – Москва : Мир, 1980. – 539 с.
  14. Численное моделирование распростра-нения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Київ : Наук. думка, 1997. – 368 с.
  15. Biliaiev, M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. Biliaiev // NATO Science for Peace and Security Series C: Environmental Security. – 2011. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15.


DOI: https://doi.org/10.15802/stp2016/82775

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)