USE OF MICROCONTROLLER FOR MEASURING SHAFT SPEED OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION

I. V. Zhukovytskyy, I. A. Kliushnyk

Abstract


Purpose. The article considers the process of development and improvement of tachometer data collectors for the data-measuring diesel locomotive hydraulic transmission test system, which will give the possibility of obtaining the source data to conduct further studies of the technical condition of diesel locomotive hydraulic transmission. It is supposed to provide a solution to the problem of development and improvement of tachometer data measuring tools of the previously created data-measuring diesel locomotive hydraulic transmission test system, starting out from the possibility of modification of the existing locomotive hydraulic transmission test-bench at the Dnepropetrovsk Diesel Locomotive Repair Plant «Promteplovoz». Methodology. The researchers proposed in the work a method of modifying the existing tachometer sensor of the automated microprocessor system for the locomotive hydraulic transmission test-bench in the conditions of a diesel locomotive repair plant. It is applicable by substantiating the choice of the required tachometer sensor measuring method, as well as by using the necessary hardware and software to accomplish the goal with the ability to integrate into the data-measuring system for diesel locomotive hydraulic transmission testing. Findings. The available equipment of the locomotive hydraulic transmission test-bench allowed for design of the optical type speed sensor based on the existing sensor D-2MMU-2. The factory testing with the use of a sensor prototype resulted in determination of the required and sufficient sampling time for sensor operating microcontroller. Originality. The available equipment of the locomotive hydraulic transmission test-bench allowed for design of the optical type speed sensor based on the existing sensor D-2MMU-2. We developed the operation algorithms for the microcontroller that processes the signals from this sensor. The sensor was factory-tested. According to the data sample obtained during the tests, we showed the possibility of reducing the sensor information retrieval frequency. Practical value. The designed sensor significantly reduces the cost of development of the diesel locomotive hydraulic transmission test-bench, besides it can be used when developing similar hydraulic transmission test-benches of other wheeled vehicles and the like. The designed sensor has a greater accuracy than that of D-2-2MMU and considerably lower production cost in comparison with current tachometer sensors. The measurement results are input data to perform further studies in order to determine the technical condition of UGP750-1200 hydraulic transmission during the factory post-repair testing.


Keywords


tachometer sensor; D-2MMU-2; hydraulic transmission; hydraulic transmission test; test-bench; data-measuring system

References


Balinova, B. C. (2004). Statistika v voprosakh i otvetakh. Moscow: TK Velbi, Prospekt.

Bezgin, A. S., & Grekov, E. L. (2013). Primeneniye inkrementalnogo enkodera kak datchika skorosti v tsifrovykh sistemakh upravleniya ekskavatornogo elektroprivoda peremennogo toka. Nauchno-tekhnicheskiy vestnik Povolzhya – Scientific and Technical Bulletin of Povolzhe, 3, 72-76.

Zhukovitskiy, I. V., & Klyushnik, I. A. (2016). Ispolzovaniey mikrokontrollerov v stende ispytaniya gidravlicheskikh peredach teplovoza. Paper presented at VII Mizhnarodna naukovo-praktychna konferentsiya «Bezpeka ta elektromahnitna sumisnist na zaliznychnomu transporti», Dnipropetrovsk.

Kiryanov, A. V., Chukanov, V. V., Kiryanov, V. P., & Perebeynos, S. V. (2013). Informatsionno-upravlyayushchaya sistema aktivnogo aerostaticheskogo podshipnika na baze fotoelektricheskogo preobrazovatelya kombinirovannogo tipa. Interekspo Geo-Sibir, 5(1), Retrieved from http://cyberleninka.ru/article/n/informatsionno-upravlyayuschaya-sistema-aktivnogo-aerostaticheskogo-podshipnika-na-baze-fotoelektricheskogo-preobrazovatelya

Kliushnyk, I. A. (2016). Vykorystannia informatsiinykh tekhnolohii dlia vymiriuvannia chastoty obertannia na stendi vyprobuvannia hidravlichnykh peredach teplovoziv. Paper presented at Vseukrainska naukovo-praktychna konferentsiya studentiv, aspirantiv ta molodykh vchenykh: «Informatsiino-tekhnolohii v modeliuvanni», Mykolaiv.

Rudenko, V. M. (2012). Matematychna statystyka. Kyiv: Tsentr uchbovoi literatury.

Stepnov, M. N. (1985). Statisticheskiye metody obrabotki rezultatov mekhanicheskikh ispytaniy: Spravochnik. Moscow: Mashinostroeniye.

Saranskiye pribory (2016). Takhometry magnitoinduktsionnyye distantsionnyye TMi. OOO «Saranskiye pribory». Saranskiye pribory, Retrieved from http://sibspz.ru/pribory-dlya-izmereniya-parametrov-dvizheniya-takhometry/takhometry-magnitoinduktsionnye-distantsionnye-tmi

OMRON Corporation (2016). EE-SX1041 Photomicrosensor (Transmissive). OMRON Corporation, Retrieved from https://www.omron.com/ecb/products/photo/34/ee_sx1041.html

Xu, G., Qiuhua, W., Shouwang, Y., Wei, C., & Changhai, Z. (2013). Improved PSO algorithm for improving the subdivision accuracy of photoelectric rotary encoder. Infrared and Laser Engineering, 42(6), 320-323.

Zhukovytskyy, I. V., Kliushnyk, I. A., Ochkasov, O. B., & Korenyuk, R. O. (2015). Information-measuring Test System of Diesel Locomotive Hydraulic Transmissions. Nauka ta prohres transportu – Science and Transport Progress, 5(59)(59), 53-65. doi:10.15802/stp2015/53159

Schneider Electric (2016). Opto-electronic rotary encoders OsiSense XCC. Catalogue. Schneider Electric, Retrieved from http://katalog.schneider-electric.cz/dsmapp/data/pdf/cz/TL3/XCC_Rotary_OsiSense.pdf

Zheng, D., Zhang, S., Wang, S., & Zheng, D. (2015). A capacitive rotary encoder based on quadrature modulation and demodulation. IEEE Transactions on Instrumentation and Measurement, 64(1), 143-153. doi:10.1109/TIM.2014.2328456


GOST Style Citations


  1. Балинова, B. C. Статистика в вопросах и ответах : учеб. пособие. – Москва : ТК Велби : Изд-во Проспект, 2004. – 344 с.
  2. Безгин, А. С. Применение инкрементального энкодера как датчика скорости в цифровых системах управления экскаваторного электропривода переменного тока / А. С. Безгин, Э. Л. Греков // Науч.-техн. вестн. Поволжья. – 2013. – № 3. – С. 72–76.
  3. Жуковицкий, И. В. Использование микроконтроллеров в стенде испытания гидравлических передач тепловоза / И. В. Жуковицкий, И. А. Клюшник // Безпека та електромагнітна сумісність на залізничному транспорті : тези VII Міжнар. наук.-практ. конф. (16.02–19.02.2016), с. Розлуч / Дніпропетр. нац. ун-т залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2016. – С. 33.
  4. Информационно-управляющая система активного аэростатического подшипника на базе фотоэлектрического преобразователя комби-нированного типа [Electronic resource] / А. В. Кирьянов, В. В. Чуканов, В. П. Кирьянов, С. В. Перебейнос // Интерэкспо Гео-Сибирь. – 2013. – Вып. 1, т. 5. – 8 с. – Available at: http://cyberleninka.ru/article/n/informatsionno-upravlyayuschaya-sistema-aktivnogo-aerostaticheskogo-podshipnika-na-baze-fotoelektricheskogo-preobrazovatelya. – Title from the screen. – Accessed : 12.09.2016.
  5. Клюшник, І. А. Використання інформаційних технологій для вимірювання частоти обертання на стенді випробування гідравлічних передач тепловозів / І. А. Клюшник // Інформ. технології в моделюванні : матер. всеукр. наук.-практ. конф. студентів, аспірантів та молодих вчених (24.03–25.03.2016) / Миколаїв. нац. ун-т ім. В. О. Сухомлинського. – Миколаїв, 2016. – С. 82–83.
  6. Руденко, В. М. Математична статистика : навч. посібник / В. М. Руденко. – Київ : Центр учбової літ-ри, 2012. – 303 с.
  7. Степнов, М. Н. Статистические методы обработки результатов механических испытаний : справочник. – Москва : Машиностроение, 1985. – 232 с.
  8. Тахометры магнитоиндукционные дистанционные ТМи [Electronic resource] // ООО «Саранские приборы». – 2016. – Available at: http://sibspz.ru/pribory-dlya-izmereniya-parametrov-dvizheniya-takhometry/takhometry-magnitoinduktsionnye-distantsionnye-tmi. – Title from the screen. – Accessed : 2.07.2016.
  9. EE-SX1041. Photomicrosensor (Transmissive) [Electronic resource] // OMRON Corporation. – 2016. – Available at: https://www.omron.com-/ecb/products/photo/34/ee_sx1041.html. – Title from the screen. – Accessed : 2.07.2016.
  10. Improved PSO algorithm for improving the subdivision accuracy of photoelectric rotary encoder / G. Xu, W. Qiuhua, Y. Shouwang [et al.] // Infrared and Laser Engineering. – 2013. – Т. 42, № 6. – С. 320–323.
  11. Information-measuring Test System of Diesel Locomotive Hydraulic Transmissions / I. V. Zhu-kovytskyy, I. A. Kliushnyk, O. B. Ochkasov, R. O. Korenyuk // Наука та прогрес транспорту. – 2015. – № 5 (59). – С. 53–65. doi: 10.15802-/stp2015/53159.
  12. Opto-electronic rotary encoders OsiSense XCC. Catalogue [Electronic resource] // Schneider Electric. – 2016. – Available at: http://ka-talog.schneiderelectric.cz/dsmapp/data/pdf/cz/-TL3/XCC_Rotary_OsiSense.pdf. – Title from the screen. – Accessed : 2.07.2016.
  13. Zheng, D. A capacitive rotary encoder based on quadrature modulation and demodulation / D. Zheng,S. Zhang, S. Wang // IEEE Transactions on Instrumentation and Measurement. – 2015. – Vol. 64. – Iss. 1. – P. 143–153. doi: 10.1109/TIM.2014.2328456.


DOI: https://doi.org/10.15802/stp2016/83990

 

Cited-by:

1. CHOICE OF THE OPTIMAL PARAMETERS OF MEASURING THE SHAFT ROTATION FREQUENCY OF THE HYDRAULIC TRANSMISSION OF THE LOCOMOTIVE USING MICROCONTROLLER
I. V. Zhukovytskyy, I. A. Kliushnyk
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 2(68)  First page: 36  Year: 2017  
doi: 10.15802/stp2017/99945



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)