TERMS OF ENSURING QUALITY OF THE RAILWAY WHEELS BUILT UP BY WELDING

O. A. Haivoronskyi

Abstract


Purpose. The paper assumes to set the basic laws in determining the structure and physical-mechanical properties of wheel steels during arc welding technology and to develop the recommendations for reconstruction of railway wheel wear surfaces that will improve the reliability and safety of traffic in terms of increasing operating loads. Methodology. To achieve this purpose the paper studied 1) the influence of operating loads on structural changes and properties of metal wheels; 2) the impact of arc welding on structural and phase composition and properties of the metal heat-affected zone, its resistance to brittle and slow fracture; 3) the impact of welded metal on the formation of the stress state of the welds and their resistance to formation cracks; 4) wear resistance of built up metal during friction-slip of the «wheel-rail» pair. Findings. The most intense zone of the rolling profile of freight railway wheels during operation is a place of transition from rolling surface to the ridge. Therefore, the wheel building up by welding requires first of all the increased resistance to brittle fracture of metal in this area. It is established that welding in the metal of the wheel heat-affected zone cause formation of the hardened bainite-martensite structures. The minimum metal cooling rate, at which the martensite start forming is 8°C / s (in the range of 600…500°C) when the content of carbon in steel is 0.58% and 2°C/s at 0.65% of carbon. It is shown that to increase resistance to cracking it is necessary to limit the cooling rate to 16.0°C/s when the carbon content is C < 0.60% and to 8.0°C / s when C = 0.60…0.65%. Under these conditions, the metal has rather high ability to mikroplastic deformation without cracking. It was founded that to improve the critical stress intensity factor К at brittle fracture it is necessary to provide conditions when welding would result in the built up structure that does not contain upper bainite and the martensite share does not exceed the number of lower bainite (ratio of M/Bn < 1). It is proved that exposure of wheels within 3.5-4.5 hours at 100°C after welding, during their slow cooling improves resistance to brittle fracture of metal heat-affected zone by 1.8-2.3 times. This is due to the removal of diffusion hydrogen from the metal and reduction of the ІІ type stress in the lath volume of bainite and martensite by 1.5. Originality. The author has developed the idea of the structural-phase changes that occur in the metal of railway wheels during arc welding. The relation between the carbon content in steel, cooling rate during welding and resistance to cracking and brittle fracture was found. The authors determined the influence of after-welding wheel cooling conditions on the metal properties. Practical value. Technological recommendations for railway freight wheel building up by welding were developed. Their application will improve quality of the railway wheels built up by welding, reliability and safety of traffic in conditions of growing operating loads.


Keywords


railway wheel; arc welding; heat-affected zone; structure; cold crack; brittle fracture; weld metal; wear resistance; technological recommendations

References


Babachenko, A. I., Uzlov, I. G., & Dementeva, Z. A. (2005). Vliyaniye mikrolegirovaniya stali na vyazkost razrusheniya zheleznodorozhnykh koles. Metallurgicheskaya i gornorudnaya promyshlennost – Metallurgical and Mining Industry, 5, 46-47.

Gayvoronskiy, A. A., Poznyakov, V. D., Markashova, L. I., Bernikova, Y. N., Klapatyuk, A. V., Alekseenko, T. A., & Shishkevich, A. S. (2012). Vliyaniye sostava naplavlennogo metalla na strukturu i mekhanicheskiye svoystva zheleznodorozhnykh koles. Avtomaticheskaya svarka – Automatic Welding, 8, 18-24.

Vakulenko, I. O., Anofriiev, V. H., Hryshchenko, M. A., & Perkov, O. M. (2007). Defekty zaliznychnykh kolis. Dnipropetrovsk: Makovetskyi.

Babachenko, A. I., Kononenko, A. A., Dementeva, Z. A., Litvinenko, P. L., & Knysh, A. V. (2010). Issledovaniye prichin obrazovaniya defektov na poverkhnosti kataniya vysokoprochnykh koles v protsesse ekspluatatsii. Zaliznychnyi transport Ukrainy – Railway Transport of Ukraine, 5, 35-38.

Ostash, O. P., Andreiko, I. M., Kulyk, V. V., & Prokopets, V. I. (2011). Kontaktno-vtomna poshkodzhuvanist poverkhni kochennia zaliznychnykh kolis typu KP-2 ta KP-T. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana, 39, 118-122.

Zakharov, S. M. (2004). Kontaktno-ustalostnoye povrezhdeniye koles gruzovykh vagonov. Moscow: Intekst.

Kostin, V. A., Grigorenko, G. M., & Orlovskiy, V. Y. (2008). Sovremennyye vozmozhnosti modelirovaniya prevrashcheniya austenita v svarnykh shvakh nizkolegirovannykh staley. Avtomaticheskaya svarka – Automatic Welding, 3, 31-34.

Makarov, E. L. (1981). Kholodnyye treshchiny pri svarke legirovannykh staley. Moscow: Mashinostroeniye.

Robotnov, Y. N. (1972). Novyye metody otsenki soprotivlyayemosti metallov khrupkomu razrusheniyu. Moscow: Mir.

Haivoronskyi, O. A., Pozniakov, V. D., & Klapatiuk, A. V. (2014). Sposib vidnovlennia vyrobiv z vysokovuhletsevykh stalei. Patent Ukraine, no. а 201314813. Ukraine.

Ryabtsev, I. I., Chernyak, Y. P., & Osin, V. V. (2004). Blochno-modulnaya ustanovka dlya ispytaniy naplavlennogo metalla. Svarshchik – Welder, 1, 18-20.

Babachenko, A. I., Litvinenko, P. L., Knysh, A. V., Dementeva, Z. A., Khulin, A. N., & Shpak, Y. A. (2011). Sovershenstvovaniye khimicheskogo sostava stali dlya zheleznodorozhnykh koles, obespechivayushchego povysheniye ikh stoykosti k obrazovaniyu defektov na poverkhnosti kataniya. Sbornik nauchnykh trudov «Fundamentalnyye i prikladnyye problemy chernoy metallurgii», 23, 226-233.

Shur, Y. A. (2006). K voprosu ob optimizatsii sootnosheniya tverdosti relsov i koles. Vestnik VNIIZhTa – Bulelin of ARSRIRT, 3, 9-14.

Cassidy, P. (2001). Wrought materials way prolong wheel lifewheel sat technology. Intern. Railway Journal, 12, 40-41.


GOST Style Citations


  1. Бабаченко, А. И. Влияние микролегирования стали на вязкость разрушения железнодорожных колес / А. И. Бабаченко, И. Г. Узлов, Ж. А. Дементьева // Металлург. и горноруд. пром-сть. – 2005. – № 5. – С. 46–47.
  2. Влияние состава наплавленного металла на структуру и механические свойства железнодорожных колес / А. А. Гайворонский, В. Д. Позняков, Л. И. Маркашова [и др.] // Автоматическая сварка. – 2012. – № 8. – С. 18–24.
  3. Дефекти залізничних коліс / І. О. Вакуленко, В. Г. Анофрієв, М. А. Грищенко, О. М. Перков. – Дніпропетровськ : Маковецький, 2007. – 112 с.
  4. Исследование причин образования дефектов на поверхности катания высокопрочных колес в процессе эксплуатации / А. И. Бабаченко, А. А. Кононенко, Ж. А. Дементьева [и др.] // Залізн. трансп. України. – 2010. – № 5. – С. 35–38.
  5. Контактно-втомна пошкоджуваність поверхні кочення залізничних коліс типу КП-2 та КП-Т / О. П. Осташ, І. М. Андрейко, В. В. Кулик, В. І. Прокопець // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпро-петровськ, 2011. – Вип. 39. – С. 118–122.
  6. Контактно-усталостное повреждение колес грузовых вагонов / под ред. проф. С. М. Захарова. – Москва : Интекст, 2004. – 160 с.
  7. Костин, В. А. Современные возможности моделирования превращения аустенита в сварных швах низколегированных сталей / В. А. Костин, Г. М. Григоренко, В. Ю. Орловский // Автоматическая сварка. – 2008. – № 3. – С. 31–34.
  8. Макаров, Э. Л. Холодные трещины при сварке легированных сталей / Э. Л. Макаров. – Москва : Машиностроение, 1981. – 247 с.
  9. Новые методы оценки сопротивляемости металлов хрупкому разрушению / под ред. Ю. Н. Роботнова. – Москва : Мир, 1972. – 439 с.
  10. Пат. 107301 Україна, МПК 2014.01, В 23 Р 6/00. Спосіб відновлення виробів з високовуглецевих сталей / Гайворон-ський О. А., Позняков В. Д., Клапатюк А. В. (Україна) ; заявник та патентовласник Ін-т електрозварювання ім. Є. О. Патона НАН України. – № а 2013 14813 ; заявл. 17.12.2013 ; опубл. 10.12.2014, Бюл. № 23. – 5 с.
  11. Рябцев, И. И. Блочно-модульная установка для испытаний наплавленного металла / И. И. Рябцев, Я. П. Черняк, В. В. Осин // Сварщик. – 2004. – № 1. – С. 18–20.
  12. Совершенствование химического состава стали для железнодорожных колес, обеспечивающего повышение их стойкости к образованию дефектов на поверхности катания / А. И. Бабаченко, П. Л. Литвиненко, А. В. Кныш [и др.] // Фундамент. и прикл. проблемы черной металлургии : сб. науч. тр. / ИЧМ НАН Украины. – Днепропетровск, 2011. – Вып. 23. – С. 226–233.
  13. Шур, Е. А. К вопросу об оптимизации соотношения твердости рельсов и колес / Е. А. Шур // Вестн. ВНИИЖТа. – 2006. – № 3. – С. 9–14.
  14. Cassidy, Ph. Wrought materials way prolong wheel lifewheel sat technology / Ph. Cassidy // Intern. Railway J. – 2001. – № 12. – P. 40–41.
  15. Estimation of the strength and crack resistance of the metal of railway wheels after long-term operation / L. I. Markashova, V. D. Poznyakov, A. A. Gaivoronskii [et al.] // Materials Science. – 2012. – Vol. 47. – Iss. 6. – Р. 799–806. doi: 10.1007/s11003-012-9458-1.
  16. Stevenot, G. L’innovation dans les roué’s ferroviates et l’volution des march’s / G. Stevenot,
  17. F. Damilly // Revue Générale des Chemins de Fer. – 2002. – № 5. – P. 33–39.
  18. Structure and mechanical properties of the heat affected zone of restored railway wheels / О. А. Haivorons’kyi, V. D. Poznyakov, L. І. Mar-kashova [et al.] // Materials Science. – 2016. – Vol. 51. – Iss. 4. – Р. 563–569. doi: 10.1007/s11003-016-9876-6.
  19. Wpływ wodoru dyfuzyjnego na odporność pękaniu kruchemu metalu strefy wpływu termicznego wysokowytrzymałej stali węglowej / A. Gajworonski, S. Kasatkin, L. Markaszowa, T. Zuber // Przeglad Spawalnictwa. – 2014. – № 12. – P. 49–55.


DOI: https://doi.org/10.15802/stp2016/84078

 

Cited-by:

1. ELASTIC NONLINEAR DYNAMICS OF MOTION OF SLIDE OF VERTICAL TURNING MACHINE FOR WORKING OF SOLID-ROLLED RAILWAY WHEELS
R. P. Pogrebnyak
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 4(70)  First page: 98  Year: 2017  
doi: 10.15802/stp2017/109606



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)