AUTOMATED MEASURING COMPLEX FOR ACCEPTANCE TESTING OF DC AND UNDULATED-CURRENT TRACTION MOTORS

A. Yu. Drubetskyi

Abstract


Purpose. In the paper it is necessary: 1) to familiarize the reader with the modern classification of measurement and diagnostics, familiarize with problems of automating the measurement of basic parameters during program execution of qualification tests of traction motors; 2) to make recommendations to improve the measurement ac-curacy, reduce labor intensity of work for carrying out measurements, and reduce the requirements for the qualification of the staff; 3) to provide practical implementation of measurement system, built on the basis of the practical recommendations contained in the article. Methodology. The work presents the classification of measurement and diagnostic tools. The author considered a list of equipment that can be used in measurement systems, as well as third-party options for measuring complex and measuring complex using stand management system. Their functional schemes were proposed. The author compared the advantages and disadvantages of these schemes to make recommendations on areas of their optimal use. Findings. Having analyzed the functional scheme of measuring systems, it was found that the use of the control system microcontroller as a measuring complex is expedient if the measurements have largely a test process control function. The use of a third-party measuring complex is more appropriate in cases when it is required: to eliminate dependence on the stand management system, to provide high mobility and reduce the requirements for the qualification of the staff. Originality. The work presents a brief over-view of the measurement means. The author developed the functional schemes of measuring systems using stand management system and third-party measuring complex, proposed the criteria for evaluating their optimal use. Practical value. Based on the proposed functional diagram, the measuring system on National Instruments hard-ware and software basis was set up. The sensors by LEM Company were used as primary transducers for the measurement of currents and voltages. Thanks to chassis compact size, it was united in one body with the power supply for sensors. Thus, it was possible to reduce the size of the entire complex, simplify and speed up its preparations for the measurements.


Keywords


qualification tests of traction motors; loading-back stand; measuring system; functional diagram

References


Ayficher, E. S., & Dzhervis, B. U. (2008). Tsifrovaya obrabotka signalov: Prakticheskiy podkhod. Moscow: Vilyams.

Afanasov, A. M. (2012). Sistemy vzaimnogo nagruzheniya tyagovykh elektricheskikh mashin postoyannogo i pulsiruyushchego toka. Dnepropetrovsk: Makovetskiy.

GOST 2582-81. Mashiny elektricheskiye vrashchayushchiesya tyagovyye. Obshchiye tekhnicheskiye usloviya (1981). Moscow: Izdatelstvo standartov.

Datchiki LEM (2016). Retrieved from http://www.lem.com/ru/ru

Kuznetsov, V. H., Kyryliuk, T. I., & Serhatyi, Y. M. (2011). Eksperymentalne doslidzhennia «umovnykh vtrat» elektroenerhii v tiahovii merezhi. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy – Eastern-European Journal of Enterprise Technologies, 4/8, 29-33.

LabVIEW (2016). Retrieved from http://www.labview.ru/products/27/n

Loza, P. O. (2008). Pokrashchennia enerhetychnykh vlastyvostei stenda dlia vyprobuvan kolektornykh tiahovykh dvyhuniv lokomotyviv. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana, 22, 69-71.

Moduli cDAQ (2016). Retrieved from http://www.labview.ru/products/195

NI CompactDAQ-zakonchennyye USB-ili Ethernet-sistemy sbora dannykh, prednaznachennyye kak dlya izmereniy signalov, tak i dlya upravleniya tekhnologicheskimi protsessami (2016). Retrieved from http://www.labview.ru/products/193

NI CompactRIO – nedorogaya rekonfiguriruyemaya platforma upravleniya i sbora dannykh dlya prilozheniy, trebuyushchikh vysokoy proizvoditelnosti i nadezhnosti (2016). Retrieved from http://www.labview.ru/products/185

Pravyla remontu elektrychnykh mashyn elektrovoziv i elektropoizdiv. TsT-0204 (2012). Kyiv: SAM.

Castaneda, C. E., & Esquivel, P. (2010). Direct current motor control based on high order neural networks using stochastic estimation – Neural Networks (IJCNN). Paper presented at The 2010 Intern. Joint Conference on Neural Networks (IJCNNI), Barcelona.

Castaneda, C. E., Loukianov, A. G., Sanchez, E. N., & Bernardino, C. T. (2012). Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux. IEEE Transactions on Industrial Electronics, 59(2), 1194-1207. doi:10.1109/TIE.2011.2161246

Hayek, E. J., Sobczyk, T. J., & Skarpetowski, G. (2010). Experiences with a traction drive laboratory model. Electromotion, 17(1), 30-36.


GOST Style Citations


  1. Айфичер, Э. С. Цифровая обработка сигналов: практический подход / Э. С. Айфичер, Б. У. Джервис. – 2-е изд.– Москва : Вильямс, 2008. – 992 с.
  2. Афанасов, А. М. Системы взаимного нагружения тяговых электрических машин постоянного и пульсирующего тока : монография / А. М.  Афанасов. – Днепропетровск : Маковецкий, 2012. – 248 с.
  3. ГОСТ 2582-81. Машины электрические вращающиеся тяговые. Общие технические условия. – Введ. 1983-01-01. – Москва : Изд-во стандартов, 1981. – 34 с.
  4. Датчики LEM [Электронный ресурс]. – Режим доступа: http://www.lem.com/ru/ru. – Загл. с экрана. – Проверено : 08.11.2016.
  5. Кузнецов, В. Г. Експериментальне дослідження «умовних втрат» електроенергії в тяговій мережі / В. Г. Кузнецов, Т. І. Кирилюк, Ю. М. Сергатий // Вост.-Европ. журн. передовых технологий. – 2011. – № 4/8. – С. 29–33.
  6. LabVIEW [Электронный ресурс]. – Режим доступа: http://www.labview.ru/products/27/. – Загл. с экрана. – Проверено : 08.11.2016.
  7. Лоза, П. О. Покращення енергетичних властивостей стенда для випробувань колекторних тягових двигунів локомотивів / П. О. Лоза // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2008. – Вип. 22. – С. 69–71.
  8. Модули cDAQ [Электронный ресурс]. – Режим доступа: http://www.labview.ru/products/195/. – Загл. с экрана. – Проверено : 08.11.2016.
  9. NI CompactDAQ-законченные USB-или Ethernet-системы сбора данных, предназначенные как для измерений сигналов, так и для управления технологическими процессами [Электронный ресурс]. – Режим доступа: http://www.labview.ru/products/193/. – Загл. с экрана. – Проверено : 08.11.2016.
  10. NI CompactRIO – недорогая реконфигурируемая платформа управления и сбора данных для приложений, требующих высокой производительности и надежности [Электронный ресурс].– Режим доступа: http://www.labview.ru/products/185/. – Загл. с экрана. – Проверено : 08.11.2016.
  11. Правила ремонту електричних машин електровозів і електропоїздів : ЦТ-0204. – Киів : САМ, 2012. – 286 с.
  12. Castañeda, C. E. Direct current motor control based on high order neural networks using stochastic estimation / C. E. Castañeda, P. Esquivel // The 2010 Intern. Joint Conference on Neural Networks (IJCNNI) (18.07–23.07.2010). – Barcelona, Spain, 2010. – P. 1515–1520.
  13. Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux / C. E. Castaneda, A. G. Loukianov, E. N. Sanchez, C.-T. Bernardino // IEEE Transactions on Industrial Electronics. – 2012. – Vol. 59. – Iss. 2. – P. 1194–1207. doi: 10.1109/TIE.2011.2161246.
  14. Hayek, El. J. Experiences with a traction drive laboratory model / El. J. Hayek, T. J. Sobczyk, G. Skarpetowski // Electromotion. – 2010. – Vol. 17. – Iss. 1. – P. 30–36.


DOI: https://doi.org/10.15802/stp2016/90482

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)