NETWORK TRAFFIC FORCASTING IN INFORMATION-TELECOMMUNICATION SYSTEM OF PRYDNIPROVSK RAILWAYS BASED ON NEURO-FUZZY NETWORK

V. M. Pakhomovа

Abstract


Purpose. Continuous increase in network traffic in the information-telecommunication system (ITS) of Prydniprovsk Railways leads to the need to determine the real-time network congestion and to control the data flows. One of the possible solutions is a method of forecasting the volume of network traffic (inbound and outbound) using neural network technology that will prevent from server overload and improve the quality of services. Methodology. Analysis of current network traffic in ITS of Prydniprovsk Railways and preparation of sets: learning, test and validation ones was conducted as well as creation of neuro-fuzzy network (hybrid system) in Matlab program and organization of the following phases on the appropriate sets: learning, testing, forecast adequacy analysis. Findings. For the fragment (Dnipropetrovsk – Kyiv) in ITS of Prydniprovsk Railways we made a forecast (day ahead) for volume of network traffic based on the hybrid system created in Matlab program; MAPE values are as follows: 6.9% for volume of inbound traffic; 7.7% for volume of outbound traffic. It was found that the average learning error of the hybrid system decreases in case of increase in: the number of inputs (from 2 to 4); the number of terms (from 2 to 5) of the input variable; learning sample power (from 20 to 100). A significant impact on the average learning error of the hybrid system is caused by the number of terms of its input variable. It was determined that the lowest value of the average learning error is provided by 4-input hybrid system, it ensures more accurate learning of the neuro-fuzzy network by the hybrid method. Originality. The work resulted in the dependences for the average hybrid system error of the network traffic volume forecasting for the fragment (Dnipropetrovsk-Kyiv) in ITS Prydniprovsk Railways on: the number of its inputs, the number of input variable terms, the learning sample power for different learning methods. Practical value. Forecasting of network traffic volume in ITS of Prydniprovsk Railways will allow for real-time identification of the network congestion and control of data flows.


Keywords


forecasting; network traffic; volume; neuro-fuzzy network; hybrid system; term; membership function; set; adequacy; error

References


Gerasina, A. V. (2013). Adaptivnoye nechetkoye prognozirovaniye trafika v informatsionnykh telekommunikatsionnykh setyakh. Systemy obrobky informatsii – Information Processing Systems, 9(116), 141-145.

Konstantinov, D. V. (2010). Formuvannia adaptyvnoi tekhnolohii prymiskykh zaliznychnykh perevezen. Avtoreferat Diss. Kharkiv.

Kostiennikov, O. M. (2012). Udoskonalennia tekhnolohii formuvannia mistsevoho vahonopotoku na dilnytsi v umovakh sezonnoho kolyvannia obsiahiv navantazhennia. Avtoreferat Diss. Kharkiv.

Leonenkov, A. V. (2003). Nechetkoye modelirovaniye v srede MatLAB i fuzzy TECH. Saint-Petersburg: BKhV-Peterburg.

Manusov, V. Z., & Biryukov, Y. V. (2006). Kratkosrochnoye prognozirovaniye elektricheskoy nagruzki na osnove nechetkoy neyronnoy seti i yeye sravneniye s drugimi metodami. Izvestiya Tomskogo politekhnicheskogo universiteta – Bulletin of the Tomsk Polytechnic University, 309(6), 153-158.

Meshcheryakov, V. A., & Denisov, I. V. (2011). Modelirovaniye adaptivnoy sistemy neyronechetkogo upravleniya rabochim protsessom strelovogo krana. Paper presented at V Mezhdunarodna nauchnaya konferentsiya «Proyektirovaniye inzhenernykh i nauchnykh prilozheniy v srede MatLAB», Kharkov.

Pakhomova, V. M., & Dmitriiev, S. Y. (2013). Rozrobka pidsystemy operatyvnoho prohnozuvannia prostoiv prybuvaiuchykh poizdiv na osnovi ANFIS-systemy. Informatsiino-keruiuchi systemy na zaliznychnomu transporti – Information and Control Systems at Railway Transport, 4, 46-55.

Pakhomova, V. M. (2013). Doslidzhennia inzhynirynhu trafika v kompiuternii merezhi UZ za tekhnolohiieiu MPLS TE. Nauka ta prohres transportu – Science and Transport Progress, 1(55), 139-147. doi:10.15802/stp2015/38262

Pokrovskaya, M. A. (2012). Metod prognozirovaniya izmeneniya trafika s ispolzovaniyem neyrosetevoy modeli. T-Comm – Telekommunikatsii i Transport – T-Comm – Telecommunications and Transport, 6, 27-30.

Rukkas, K. M., Solyanik, Y. V., Ovchinnikov, K. A., & David, O. O. (2014). Sravnitelnyy analiz metodov prognozirovaniya trafika v telekommunikatsionnykh sistemakh. Problemy telekommunikatsiy – Problems of Telecommunications, 1(13), 84-95. Retrieved from http://pt.journal.kh.ua/2014/1/1/141_rukkas_analysis.pdf

Chabaa, S., Zeroual, A., & Antari, J. (2010). Identification and prediction of internet traffic using artificial neural networks. Journal of Intelligent Learning Systems and Applications, 02(03), 147-155. doi:10.4236/jilsa.2010.23018

Gowrishankar, S., & Satyanarayana, P. S. (2009). A time series modeling and prediction of wireless network traffic. Intern. Journal of Interactive Mobile Technologies (iJIM), 3(1), 53-62. doi:10.3991/ijim.v3i1.284

Cortez, P., Rio, M., Rocha, M., & Sousa, P. (2010). Multi-scale internet traffic forecasting using neural networks and time series methods. Expert Systems, 29(2), 143-155. doi:10.1111/j.1468-0394.2010.00568.x


GOST Style Citations


  1. Герасина, А. В. Адаптивное нечеткое прогнозирование трафика в информационных телекоммуникационных сетях / А. В. Герасина // Системи обробки інформації : зб. наук. пр. / Харк. ун-т повітр. сил ім. Івана Кожедуба. – Харків, 2013. – Вип. 9 (116). – С. 141–145.
  2. Константінов, Д. В. Формування адаптивної технології приміських залізничних перевезень : автореф. дис. … канд. техн. наук : 05.22.01 / Константінов Денис Володимирович ; Укр. держ. акад. залізн. трансп. – Харків, 2010. – 20 с.
  3. Костєнніков, О. М. Удосконалення технології формування місцевого вагонопотоку на дільниці в умовах сезонного коливання обсягів навантаження : автореф. дис. … канд. техн. наук : 05.22.01 / Костєнніков Олексій Михайлович ; Укр. держ. акад. залізн. трансп. – Харків, 2012. – 20 с.
  4. Леоненков, А. В. Нечеткое моделирование в среде MatLAB и fuzzy TECH / А. В. Леоненков. – Санкт-Петербург : БХВ-Петербург, 2003. – 736 с.
  5. Манусов, В. З. Краткосрочное прогнозирование электрической нагрузки на основе нечеткой нейронной сети и ее сравнение с другими методами / В. З. Манусов, Е. В. Бирюков. – Изв. Томск. политехн. ун-та. – 2006. – Т. 309, № 6. – С. 153–158.
  6. Мещеряков, В. А. Моделирование адаптивной системы нейронечеткого управления рабочим процессом стрелового крана / В. А. Мещеряков, И. В. Денисов // Проектирование инженер. и науч. приложений в среде MatLAB : материалы V Междунар. науч. конф. – Харьков, 2011. – С. 367–375.
  7. Пахомова, В. М. Розробка підсистеми оперативного прогнозування простоїв прибуваючих поїздів на основі ANFIS-системи / В. М. Пахомова, С. Ю. Дмітрієв // Інформ.-керуючі системи на залізн. трансп. – 2013. – № 4. – С. 46–55.
  8. Пахомова, В. М. Дослідження інжинірингу трафіка в комп’ютерній мережі УЗ за технологією MPLS TE / В. М. Пахомова // Наука та прогрес транспорту. – 2015. – № 1 (55). C. 139–147. doi: 10.15802/STP2015/38262.
  9. Покровская, М. А. Метод прогнозирования изменения трафика с использованием нейросетевой модели / М. А. Покровськая // T-Comm – Телекоммуникации и Транспорт. – 2012. – № 6. – С. 27–30.
  10. Сравнительный анализ методов прогнозирования трафика в телекоммуникационных системах [Electronic resource] / К. М. Руккас, Ю. В. Соляник, К. А. Овчинников, О. О. Давид // Проблемы телекоммуникаций. – 2014. – № 1 (13). – С. 84–95. – Available at: http://pt.journal.kh.ua/2014/1/1/141_rukkas_analysis.pdf. – Title from the screen. – Accessed : 22.11.16.
  11. Chabaa, S. Identification and prediction of internet traffic using artificial neural networks / S. Chabaa, A. Zeroual, J. Antari // J. of Intelligent Learning Systems and Applications. – 2010. – Vol. 02. – Iss. 03. – P. 147–155. doi: 10.4236/jilsa.2010.23018.
  12. Gowrishankar, S. A time series modeling and prediction of wireless network traffic / S. Gowrishankar, P. S. Satyanarayana // Intern. J. of Interactive Mobile Technologies (iJIM). – 2009. – Vol. 3. – Iss. 1. – P. 53–62. doi: 10.3991/ijim.v3i1.284.
  13. Multi-scale Internet traffic forecasting using neural networks and time series methods / P. Cortez, M. Rio, M. Rocha, P. Sousa // Expert Systems. – 2010. – Vol. 29. – Iss. 2. – P. 143–155. doi: 10.1111/j.1468-0394.2010.00568.x.


DOI: https://doi.org/10.15802/stp2016/90485

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)