MECHANICAL PARAMETERS CONTROL OF THE NEUTRAL RELAY OF RAIL AUTOMATICS BASED ON WAVELET ANALYSIS

V. I. Havryliuk

Abstract


Purpose. The scientific paper focuses on development of a method for mechanical parameters control of the neutral relay of rail automatics by current analyzing in the coil and the relay contacts at switching based on wavelet transform. Methodology. The methodology was based on current analysis of the relay coil and contacts currents under its switching and analysis obtained results by using wavelet transform. Findings. The time dependences of the current in coil and in contacts under switching on and off for the operable relays and relays with certain defects have been measured at different voltages applied to coil (10, 12 и 14 V). When voltage applied to coil was increased the rate of coil current increased, but time constant of the circuit was changed with voltage slightly. The current value maximum at which the relay armature begun to move for the operable relays was depended on applied voltage slightly. For the time interval, at which armature was putted to the relay core fully, time constant of the circuit was changed with voltage slightly also. The maximum current value at which the armature starts to move to the relay serviceable little dependent on the applied voltage. For site based in which the anchor is completely dragged constant current rise time is also a little dependent on the applied voltage. Similar results were obtained for the current reduction time constant with turning off the voltage and current confinement. The current pick-up and the current release of the armature increases for the relay with the load anchor is proportional to the weight of cargo, as well as for the relay contact with the rear, bent down, while the flexural rear contact up these currents have smaller values. Large-scale (low-frequency) coefficients of DWT can be used for a more accurate comparison of the current pick-up, and release time constants of the transient. Small scale coefficients fiberboard (HF) can be used as distinguishing traits defects mobile relay system. Originality. For the first time, on the basis of the research proposed to use detailing coefficients of a discrete wavelet transform as a symptom of mobile relay system. The approximation (smoothing) ratios can be used for a more accurate comparison of the current pick-up, and release time constants of the transient to detect defects of the electromagnetic relay system. Practical value. The studies conducted by the author can be used to develop stand-aided control of a technical condition of the relay neutral railway automation.


Keywords


electromagnetic relays; control parameters; the wavelet transform

References


Bondarenko, B. M. (2012). Avtomatizirovannyy kompleks diagnostiki rele zheleznodorozhnoy avtomatiki. Elektro-mahnitna sumisnist ta bezpeka na zaliznychnomu transporti – Electromagnetic Compatibility and Safety on Railway Transport, 3, 68-76.

Bondarenko, B. M. (2013). Akustychnyi kontrol elektromahnitnykh pryladiv zabezpechennia bezpeky rukhu zaliznychnoho transportutu. Elektromagnitna sumisnist ta bezpeka na zaliznitcnomu transporti – Electromagnetic Compatibility and Safety on Railway Transport, 5, 38-45.

Vitenberg, M. V. (1975). Raschet elektromagnitnykh rele. Moscow: Energiya.

Havryliuk, V. I., & Profatilov, V. I. (2002). Avtomatizatsiya kontrolya parametrov neytralnykh rele zheleznodorozhnoy avtomatiki. Informatsiino–keruiuchi systemy na zaliznychnomu transporti – Information and Control Systems for Railway Transport, 4, 5, 83-86.

Havryliuk, V., & Dub, V. Y. (2006). Diagnostirovaniye releyno-kontaktnykh ustroystv zheleznodorozhnoy avtomatiki. Vіsnyk Dnіpropetrovskoho natsionalnoho universytetu zalіznnychnoho transportu іmeni akademika V. Lazaryana, 12, 7-11.

Dub, V. Y. (2009). Diagnostirovaniye sostoyaniya rele s ispolzovaniyem isskustvennykh neyronnykh setey. Vіsnyk Dnіpropetrovskoho natsionalnoho universytetu zalіznnychnoho transportu іmeni akademika V. Lazaryana, 29, 126-130.

Korsunskiy, G. M., Mironenko, A. F., & Fedorets, P. S. (1979). Primeneniye metoda ostsillograficheskogo analiza dinamicheskikh kharakteristik elektromagnitnykh rele dlya yego tekhnicheskoy diagnostiki. Tekhnika sredstv svyazi. Seriya: Tekhnika provodnoy svyazi: nauchno-tekhnicheskiy sbornik, 5(38), 41-50.

Slivinskaya, A. G. (1972). Elektromagnity i postoyannyye magnity. Moscow: Energiya.

Chui, J. T. (1992). An Introduction to Wavelets. Pennsylvania: Academic Press.

Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia.

Dub, V., & Gavrilyuk, V. (2009). Development of neural network program for automated testing of railway contact blocks. Archives of Transport System Telematics, 2(2), 16-18.

Raulet, M. A., Sixdenier, F., & Marion, R. (2007). Electromagnetic relay modelling: a multi physics problem. Part 2: Dynamical behavior of the relay. Paper presented at Compumag, 2007: 16th Intern. Conf. on the Computation of Electromagnetic Fields, Aachen.

Laboreo, E. R., Sagues, C., & Llorente, S. (2016). A New Model of Electromechanical Relays for Predicting the Motion and Electromagnetic Dynamics. IEEE Transactions on Industry Applications, 52(3), 2545-2553. doi:10.1109/TIA.2016.2518120

Mallat, S. G. (1989). A theory for multiresolution sig-nal decomposition: the wavelet representation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 11(7), 674-693. doi:10.1109/34.192463

Mallat, S. G. (1999). A Wavelet Tour of Signal Processing Representation. San Diego: Academic Press, Elsevier.

Henrotte, F., Nicolet, A., Hedia, H., Genon, A., & Legros, W. (1994). Modeling of electromechanical relays taking into account movement and electrical circuits. IEEE Transactions on Magnetics, 30(5), 3236-3239. doi:10.1109/20.3126275

Wattiaux, D., & Verlinden, O. (2011). Modelling of the dynamic behavior of electromechanical relays for the analysis of sensitivity to shocks and vibrations. Experimental Mechanics, 51(9), 1459-1472. doi:10.1007/s11340-011-9478-z


GOST Style Citations


  1. Бондаренко, Б. М. Автоматизированный комплекс диагностики реле железнодорожной автоматики / Б. М. Бондаренко // Електро-магнітна сумісність та безпека на залізничному транспорті. – 2012. – № 3. – С. 68–76.
  2. Бондаренко, Б. М. Акустичний контроль електромагнітних приладів забезпечення безпеки руху залізничного транспорту / Б. М. Бондаренко // Електромагнітна сумісність та безпека на залізничному транспорті. – 2013. – № 5. – С. 38–45.
  3. Витенберг, М. В. Расчет электромагнитных реле / М. В. Витенберг. – Москва : Энергия, 1975. – 416 с.
  4. Гаврилюк, В. И. Автоматизация контроля параметров нейтральных реле железнодорожной автоматики / В. И. Гаврилюк, В. И. Профатилов // Інформ.–керуючі системи на залізн. трансп. – 2002. – № 4/5. – С. 83–86.
  5. Гаврилюк, В. И. Диагностирование релейно-контактных устройств железнодорожной автоматики / В. И Гаврилюк, В. Ю Дуб // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2006. – Вип. 12. – С. 7–11.
  6. Дуб, В. Ю. Диагностирование состояния реле с использованием искусственных нейронных сетей / В. Ю. Дуб // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2009. – Вип. 29. – С. 126–130.
  7. Корсунский, Г. М. Применение метода осциллографического анализа динамических характеристик электромагнитных реле для его технической диагностики / Г. М. Корсунский, А. Ф. Мироненко, П. С. Федорец // Техника средств связи. Серия: Техника проводной связи : науч.-техн. сб. – Москва, 1979. – Вып. 5 (38). – С. 41–50.
  8. Сливинская, А. Г. Электромагниты и постоянные магниты / А. Г. Сливинская. – Москва : Энергия, 1972. – 248 с.
  9. Chui, C. K. An Introduction to Wavelets / C. K. Chui. – Pennsylvania : Academic Press, 1992. – 264 p.
  10. Daubechies, I. Ten Lectures on Wavelets / I. Daubechies // CBMS-NSF Regional Conference Series in Applied Mathematics. – Philadelphia, 1992. – 378 p.
  11. Dub, V. Development of neural network program for automated testing of railway contact blocks / V. Dub, V. Gavrilyuk // Archives of Transport System Telematics. – 2009. – Vol. 2. – Iss. 2. – P. 16–18.
  12. Electromagnetic relay modelling: a multi physics problem. Part 2 : Dynamical behavior of the relay / M-A. Raulet, F. Sixdenier, R. Marion [et al.] // Compumag, 2007 : Proc. of 16th Intern. Conf. on the Computation of Electromagnetic Fields (24.06–28.06.2007). – Aachen, Germany, 2007. – Р. 125.
  13. Laboreo, E. R. A New Model of Electromechanical Relays for Predicting the Motion and Electromagnetic Dynamics / E. R. Laboreo, C. Sagues, S. Llorente // IEEE Transactions on Industry Applications. – 2016. – Vol. 52. – Iss. 3. – P. 2545–2553. doi: 10.1109/TIA.2016.2518120.
  14. Mallat, S. G. A theory for multiresolution signal decomposition: the wavelet representation / S. G. Mallat // IEEE Transaction on Pattern Analysis and Machine Intelligence. – 1989. – Vol. 11. – Iss. 7. – P. 674–693. doi: 10.1109/34.192463.
  15. Mallat, S. G. A Wavelet Tour of Signal Processing representation / S. G. Mallat. – San Diego : Academic Press : Elsevier, 1999. – 629 p.
  16. Modeling of electromechanical relays taking into account movement and electrical circuits / F. Henrotte, A. Nicolet, H. Hedia [et al.] // IEEE Transactions on Magnetics. – 1994. – Vol. 30. – Iss. 5. – P. 3236–3239. doi: 10.1109/20.312627.
  17. Wattiaux, D. Modelling of the dynamic behavior of electromechanical relays for the analysis of sensitivity to shocks and vibrations / D. Wattiaux, O. Verlinden // Experimental Mechanics. – 2011. – Vol. 51. – Iss. 9. – P. 1459–1472. doi: 10.1007/s11340-011-9478-z.


DOI: https://doi.org/10.15802/stp2016/90493

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)