CALCULATION OF POLLUTION DYNAMICS NEAR RAILWAY TERRITORY DURING COAL TRANSPORTATION

M. M. Biliaiev, M. O. Oladipo

Abstract


Purpose. The article is aimed to develop 3D numerical model for the prediction of atmospheric pollution during transportation of bulk cargo in the railway car. Methodology.To solve this problem, it was developed three-dimensional numerical model, based on the use of the transport equation of dust pollution in the air by the wind and atmospheric turbulent diffusion. For the numerical integration of the simulating equation of the dust transport the implicit difference scheme was used. When constructing a difference scheme, it was carried out prior splitting of the original transport equation into the sequence of solutions of three equations. The first of them takes into account the transport of dust in paths, the second equation – dust transport under the influence of atmospheric turbulent diffusion, and the third equation –change of the dust concentration in the air due to its emissions from the cars.Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of running account, which provides a simple numerical implementation of splitting equations. The developed numerical model is the basis for specialized computer program. On the basis of the constructed numerical model we carried out a computational experiment to assess the level of air pollution at the railway station during the motion of train with coal. Findings. Authors developed 3D numerical model, which belongs to the class of «screening models». This model takes into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during coal transportation. The proposed numerical model requires low cost of computer time in the practical implementation on small and medium-power computers. This model can be used for rapid calculations of the dynamics of air pollution when transporting coal by rail. Calculations to determine the pollutant concentration and formation of the contamination zone at Enugu station were performed. The results of physical experiment, allow us to recommend the use of additional specially shaped boards to minimize the removal of coal dust from gondola cars. Originality.It was created3D numerical model that makes it possible to take into account significant physical factors that influence the process of dust dispersion in the atmosphere. The model allows calculating the formation of pollution zones during transportation of coal by rail. Practical value. The effective numerical model of the class «screening models» for rapid calculation of the level of air pollution from coal transport by rail was considered. The model can be applied in the development of environmental protection measures in the operation of rail transport. The proposed model allows you to quickly calculate the 3D transfer of dust in the air.


Keywords


air pollution; railway transport; coal transportation; numerical simulation

References


Biliaiev, M. M., Gunko, Y. Y., & Mashikhina, P. B. (2013). Matematicheskoye modelirovaniye v zadachakh ekologicheskoy bezopasnosti i monitoringa chrezvychaynykh situatsiy. Dnipropetrovsk: Aktsent PP.

Biliaiev, M. M., Berlov, O. V., & Shevchenko, A. V. (2014). Simulation of the accidental pollution after the emergency in to the storage of rocket solid propellant. Science and Transport Progress, 5(53), 29-38. doi: 10.15802/stp2014/29973

Berlyand, M. Y. (1985). Prognoz i regulirovaniye zagryazneniya atmosfery. Leningrad: Gidrometeoizdat.

Berlyand, M. Y. (1975). Sovremennyye problemy atmosfernoy diffuzii i zagryazneniya atmosfery. Leningrad: Gidrometeoizdat.

Bruyatskiy, Y. V. (2000). Teoriya atmosfernoy diffuzii radioaktivnykh vybrosov. Kyiv: Institut gidromekhaniki NAN Ukrainy.

Vorobyov, Y. O., Nikolenko, M. O., & Khudyakova, I. O. (2005). Zapobihannia zabrudnennia povitria pylom pid chas transportuvannia vuhillia. Visti ADI DVNZ «DonNTU», 1, 34-38.

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka.

Wark, K., & Warner, C. F. (1980). Zagryazneniye vozdukha. Istochniki i kontrol. Moscow: Mir.

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, M. M. (1997). Chislennoye modelirovaniye rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka.

U.S. Environmental Protection Agency. (2004). AERMOD: Description of model formulation, No. EPA-454/R-03-004. USA, North Carolina. Retrieved from https://www3.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf

Biliaiev, M. M., & Kharytonov, M. M. (2011). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security, series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15

Fabiano, B., Curro, F., Reverberi, A. P., & Palazzi, E. (2014). Coal dust emissions: From environmental control to risk minimization by underground transport. An applicative case-study. Process Safety and Environmental Protection, 92(2), 150-159. doi: 10.1016/j.psep.2013.01.002

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. (2012). Diesel and Gasoline Engine Exhausts and Some Nitroarenes, 105. Lyon: International Agency for Research on Cancer.

Emmitt, G. D. (1999). Fugitive coal dust: An old problem demanding new solutions. Port Technology International, 9, 1.

Epstein, P. R., Buonocore, J. J., Eckerle, K., Hendryx, M., Stout III, B. M., Heinberg, R., … & Glustrom, L. (2011). Full cost accounting for the life cycle of coal. Annals of the New York Academy of Sciences, 1219(1), 73–98. doi: 10.1111/j.1749-6632.2010.05890.x

NSW Chief Scientist & Engineer. (2015). Initial Report on the Independent Review of Rail Coal Dust Emissions Management Practices in the NSW Coal Chain. Sydney: NSW. Retrieved from http://www.chiefscientist.nsw.gov.au/__data/assets/pdf_file/0009/79884/Initial-Report_Review-rail-coal-dust-emissions.pdf

Szabo, M. F. (1978). Environmental assessment of coal transportation. Cincinnati, Ohio: Environmental Protection Agency.


GOST Style Citations


  1. Беляев, Н. Н. Математическое моделирование в задачах экологической безопасности и мониторинга чрезвычайных ситуаций : монография / Н. Н. Беляев, Е. Ю. Гунько, П. Б. Машихина. – Днепропетровск : Акцент ПП, 2013. – 159 с.
  2. Беляев, Н. Н. Моделирование аварийного загрязнения атмосферы при чрезвычайной ситуации в хранилище твердого ракетного топлива / Н. Н. Беляев, А. В. Берлов, А. В. Шевченко // Наука та прогрес транспорту. – 2014. – № 5 (53). – С. 29–38. doi: 10.15802/stp2014/29973.
  3. Берлянд, М. Е. Прогноз и регулирование загрязнения атмосферы / М. Е. Берлянд. – Ленинград : Гидрометеоиздат, 1985. – 273 с.
  4. Берлянд, М. Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы / М. Е. Берлянд. – Ленинград : Гидрометеоиздат, 1975. – 448 с.
  5. Бруяцкий, Е. В. Теория атмосферной диффузии радиоактивных выбросов / Е. В. Бруяцкий. – Киев : Ин-т гидромеханики НАН Украины, 2000. – 443 с.
  6. Воробйов, Є. О. Запобігання забруднення повітря пилом під час транспортування вугілля / Є. О. Воробйов, М. О. Ніколенко, І. О. Худякова // Вісті АДІ ДВНЗ «ДонНТУ». – Горлівка, 2005. – № 1. – С. 34–38.
  7. Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
  8. Уорк, К. Загрязнение воздуха. Источники и контроль / К. Уорк, С. Уорнер. – Москва : Мир, 1980. – 539 с.
  9. Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
  10. AERMOD: Description of model formulation [Электронный ресурс]. – USA, North Carolina, 2004. – 91 p. – Режим доступа: https://www3.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf. – Загл. с экрана. – Проверено : 23.01.2017.
  11. Biliaiev, M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. Biliaiev // NATO Science for Peace and Security Series C: Environmental Security. – 2012. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15.
  12. Coal dust emissions: From environmental control to risk minimization by underground transport. An applicative case-study / B. Fabiano, F. Curro, A. P. Reverberi, E. Palazzi // Process Safety and Environmental Protection. – 2014. – Vol. 92. – Iss. 2. – P. 150–159. doi: 10.1016/j.psep.2013.01.002.
  13. Diesel and Gasoline Engine Exhausts and Some Nitroarenes : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. – Lyon, 2012. – Vol. 105. – 714 p.
  14. Emmitt, G. D. Fugitive coal dust: An old problem demanding new solutions / G. D. Emmitt // Port Technology International. – 1999;9:1.
  15. Full cost accounting for the life cycle of coal / P. R. Epstein, J. J. Buonocore, K. Eckerle [et al.] // Annals of the New York Academy of Sciences. – 2011. – Vol. 1219. – Iss. 1. – P. 73–98. doi: 10.1111/j.1749-6632.2010.05890.x.
  16. Initial Report on the Independent Review of Rail Coal Dust Emissions Management Practices in the NSW Coal Chain / Chief Scientist & Engineer. – Sydney NSW, Australia, 2015. – 75 p.
  17. Szabo, M. F. Environmental assessment of coal transportation / M. F. Szabo. – Cincinnati, Ohio : Environmental Protection Agency, 1978. – 142 р.


DOI: https://doi.org/10.15802/stp2017/92523

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)