FORMALIZATION OF LOCOMOTIVE DRIVER ACTIVITY TENSION INDICATOR BASED ON THE ERGONOMIC MODEL

O. M. Horobchenko, А. O. Antonovych

Abstract


Purpose. A key factor contributing to the safety and quality of ergatic system "train-driver" is the intensity of the locomotive crew’s work. The aim of this work is formalization of locomotive driver activity tension indicator. Methodology. One of the characteristics of driver activity tension is the difference between the time allotted to complete the task, and the necessary (external reserve or deficiency time). The sets of major and minor operations in the management of the train locomotive in different train situations were identified. Using the methods of fuzzy logic, the concept of "materiality of the operation of the locomotive control" is presented in the form of a set of linguistic variables. To determine the function membership of the elements of the set "the importance of the operation of the locomotive control" the method of expert evaluations was used. Coefficient of temporary tension is presented in the form of fuzzy number L-R-type. Findings. It was found the value of the relative number of operations of locomotive control according to the distribution using the parameter of operation "importance". To determine the most tensioned mode of the driver ranking the traffic condition according to the parameter of relative amounts of the important management operations was conducted. The most difficult modes are the "front hindrance", "movement in unfavorable weather conditions" and "departure from the station to the running line". Originality. The introduction of the value "conventional importance of the operation" allowed us to more accurately describe the terms of train driving. For the first time the work presents determination of tension of the driver’s work in the form of a unimodal fuzzy number, which will make it possible to use the methods of the theory of artificial intelligence to simulate activity of the locomotive driver and develop intelligent control systems. Practical value. There were obtained the opportunity to consider such an important quality indicator, as "the tension of the driver’s work" in systems of automatic train control and traffic safety. Ranking the onboard situations and control operations enables us to justify the order of management action for the improvement of the algorithms of system operation of train driving.


Keywords


ergatic system; intensity of the operator; locomotive engineer; traffic safety

References


Horbakha, M., Koskovetskyi, V., Mikov, D., Sulytska, I., Salamatnikova, D., & Tyshchenko, O. (2015). Analiz stanu bezpeky rukhu, polotiv, sudnoplavstva ta avariinosti na transporti v Ukraini za 2014 rik. Kyiv: Ministry of Infrastructure of Ukraine.

Gorobchenko, O. M. (2014). Methodology for determining the value of complexity parameter for emergency situation during driving of the train. Science and Transport Progress, 6(54). 50-58. doi: 10.15802/stp2014/33077

Druzhinin, G. V. (2000). Uchet svoystv cheloveka v modelyakh tekhnologiy. Moscow: Nauka, Interperiodica.

Kamenyev, O. Y. (2013). Problematics of approaches to research of the use safety of ergatic control systems on railway transport. Science and Transport Progress, 2(44), 7-16. doi: 10.15802/stp2013/12249

Munipov, V. M., & Zinchenko, V. P. (2001). Ergonomika: chelovekoorientirovannoye proyektirovaniye tekhniki, programmnykh sredstv i sredy. Moscow: Logos.

Rutkovskaya, D., Pilinskiy, M., & Rutkovskiy, L. (2006). Neyronnyye seti, geneticheskiye algoritmy i nechetkiye sistemy (I. D. Rudinskiy, Trans.). Moscow: Hot line-Telecom.

Munipov, V. M. (Ed.). (1983). Ergonomika: printsipy i rekomendatsii (2nd ed.). Moscow: All-Union scientific research Institute of technical aesthetics.

Alstom: Alstom to supply automatic train control system to Santiago de Chile metro's line 1. (2012, January 20). Retrieved from http://www.alstom.com/press-centre/2010/1/Alstom-to-supply-automatic-train-control-system-to-Santiago-de-Chile-metros-line-1-20100120

Bombardier:CITYFLO 650:A new generation for automated driverless transit systems. (n.d.). Retrieved from http://www.bombardier.com/en/transportation/products-services/rail-control-solutions/mass-transit-solutions/cityflo-650.html

Fomin, O. (2014). Modern requirements to carrying systems of railway general-purpose gondola cars. Metallurgical and Mining Industry, 5, 31-43.

Hettiarachchi. C., Do, H., & Choi, B. (2016). Risk-based test case prioritization using a fuzzy expert system. Information and Software Technology, 69, 1-15. doi: 10.1016/j.infsof.2015.08.008

Eurostat. Statistics Explained:Railway safety statistics. (2015). Retrieved from http://ec.europa.eu/eurostat/statistics-explained/index.php/Railwaysafety_statistics

Vdovina, T., & Minkoff, S. E. (2008). Аn a priori error analysis of operator upscaling for the acoustic wave equation. International Journal of Numerical Analysis and Modeling, 5(4), 543-569.


GOST Style Citations


  1. Аналіз стану безпеки руху, польотів, судноплавства та аварійності на транспорті в Україні за 2014 рік / М. Горбаха, В. Коськовецький, Д. Міков, [та ін.]. – Київ : М-во інфраструктури України, 2015. – 124 с.
  2. Горобченко, А. Н. Методология определения величины параметра сложности нештатной ситуации во время ведения поезда / А. Н. Горобченко // Наука та прогрес транспорту. – 2014. – № 6 (54). – С. 50–58. doi: 10.15802/stp2014/33077.
  3. Дружинин, Г. В. Учет свойств человека в моделях технологий / Г. В. Дружинин. – Москва : Наука/Интерпериодика, 2000. – 327 с.
  4. Каменєв, О. Ю. Проблематика підходів до дослідження безпеки використання ергатичних систем керування на залізничному транспорті / О. Ю. Каменєв // Наука та прогрес транспорту. – 2013. – № 2 (44). – С. 7–16. doi: 10.15802/stp2013/12249.
  5. Мунипов, В. М. Эргономика: человекоориентированное проектирование техники, программных средств и среды / В. М. Мунипов, В. П. Зинченко. – Москва : Логос, 2001. – 356 с.
  6. Рутковская, Д. Нейронные сети, генетические алгоритмы и нечеткие системы : [пер. с пол. И. Д. Рудинского] / Д. Рутковская, М. Пилиньский, Л. Рутковский. – Москва : Горячая линия-Телеком, 2006. – 452 c.
  7. Эргономика: принципы и рекомендации / под ред. В. М. Мунипова. – 2-е изд, перераб. – Москва : Всесоюз. науч.-исслед. ин-т техн. эстетики, 1983. – 184 с.
  8. Alstom to supply automatic train control system to Santiago de Chile metro’s line 1 [Електронний ресурс] // ALSTOM. – 2010. – Режим доступу: http://www.alstom.com/press-centre/2010/1/Alstom-to-supply-automatic-train-control-system-to-Santiago-de-Chile-metros-line-1-20100120. – Назва з екрана. – Перевірено : 20.01.2017.
  9. A new generation for driverless automated transit systems [Електронний ресурс] // Bombardier Inc. – 2016. – Режим доступу: http://www.bombardier.com/en/transportation/products-services/rail-control-solutions/mass-transit-solutions/cityflo-650.html. – Назва з екрана. – Перевірено : 20.01.2017.
  10. Fomin, O. Modern requirements to carrying systems of railway general-purpose gondola cars / О. V. Fomin / Metallurgical and Mining Industry. – 2014. – № 5. – P. 31–43.
  11. Hettiarachchi, C. Risk-based test case prioritization using a fuzzy expert system / C. Hettiarachchi, H. Do, B. Choi // Information and Software Technology. – 2016. – Vol. 69. – P. 1–15. doi: 10.1016/j.infsof.2015.08.008.
  12. Railway safety statistics [Електронний ресурс] // Eurostat. Statistics Explained. – 2015. – Режим доступу: http://ec.europa.eu/eurostat/statistics-explained/index.php/Railway_safety_statistics. – Назва з екрана. – Перевірено : 20.01.2017.
  13. Vdovina, T. Аn a priori error analysis of operator upscaling for the acoustic wave equation / T. Vdovina, S. E. Minkoff // Intern. J. of Numerical Analysis and Modeling. Institute for Scientific Computing and Information. – 2008. – Vol. 5. – P. 543–569.


DOI: https://doi.org/10.15802/stp2017/93960

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)