APPROXIMATION OF UNIVERSAL MAGNETIC CHARACTERISTIC FOR MODELLING ELECTRIC TRACTION MACHINES

A. Yu. Drubetskyi

Abstract


Purpose. The scientific work is aimed to obtain an analytic expression describing universal magnetic characteristic and enabling to take into account the demagnetizing effect of the armature. On the basis of the universal magnetic characteristics one need to obtain universal expressions for inductive parameters of electric traction machines of direct and pulsating currents. Methodology. A universal magnetic characteristic (UMC) is the dependence of the relative units of the magnetic flux on the magnetomotive force (MMF) of the excitation winding. Since MMF was built for machines operating under load, therefore, in fact it is a dependency on the MMF and on the MMF of the armature reaction. For the calculation of electromechanical characteristics at constant excitation one can use one of the well-known expressions approximating the UMC. However, during modeling the electric traction engine operation in wide ranges of excitation change it is necessary the expression, in which there is a second variable in the form of MMF of the anchor reaction. Such an expression is also necessary to determine the inductive parameters of electric traction engine, to a large extent dependent on the current. The expression for the approximation of the UMC with two variables can be obtained by analyzing the magnetic field distribution in the air gap at the calculated pole arc. Findings. The author obtained expression for approximation of the UMC, which depends on two variables: MMF of excitation and MMF of armature reaction. For a particular mode of excitation weakening it is possible to convert the expression into the function of one variable, for example, the anchor current. Also, the MMF of excitation winding can be the argument. Originality. For the UMC approximation it was proposed a methodology that makes it possible to record into approximating expression the second variable in the form of the anchor reaction MMF. Practical value. Due to the presence of speed characteristic or saturation ratio of this electric traction engine, one can determine its inductive parameters in a particular operation mode or to obtain their dependencies on the winding currents for all modes of operation.


Keywords


universal magnetic characteristics; approximation; electric traction engine; inductive parameters

References


Afanasov, A. M. (2012). Approximation of the magnetic characteristics of the traction motors of electric rolling stock. Electromagnetic Compatibility and Safety on the Railway Transport, 4, 25-29.

Belkina, Y. N., & Zhukov, S. A. (2015). Analiz sposobov approksimatsii krivoy namagnichivaniya elektrotekhnicheskoy stali. Innovatsionnaya nauka, 5-2, 22-27.

Belman, M. K. (1975). Perekhodnyye protsessy v mikrodvigatelyakh postoyannogo toka pri impulsnom pitanii. Leningrad: Energiya.

Voldek, A. I. (1978). Elektricheskiye mashiny (3rd ed.). Leningrad: Energiya.

Hetman, H. K., & Marikutsa, S. L. (2011). The analysis of analytical functions for approximative do-all magnetic characteristic of direct – current and undulated – current traction motors. Bulletin of Dnipropetrovsk National University of Railway Transport, 37, 63-71.

Hetman, H. K., & Golik, S. M. (2007). About the use of universal magnetic characteristics to calculate the electromechanical characteristics of traction motors. Bulletin of Dnipropetrovsk National University of Railway Transport, 16, 21-25.

Ivanov-Smolenskiy, A. V. (1980). Elektricheskiye mashiny. Moscow: Energiya.

Kalantarov, P. L., & Tseytlin, L. A. (1986). Raschet induktivnostey: spravochnaya kniga (3rd ed.). Leningrad: Energoatomizdat.

Kostenko, M. P., & Piotrovskiy, L. M. (1972). Mashiny postoyannogo toka. Transformatory: Elektricheskiye mashiny (3rd ed.). Leningrad: Energiya.

Kostin, M. O., & Sheikina, O. H. (2006). Teoretychni osnovy elektrotekhniky (Vol. 1-3). Dnipropetrovsk: Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan Press.

Matyuk, V. F., & Osipov, A. A. (2011). The mathematical models of the magnetization curve and the magnetic hysteresis loops, Part 1: Analysis of models. Nerazrushayushchiy kontrol i diagnostika, 2, 3-35.

Shavelkin, A., Gerasimenko, V., Kostenko, I., & Movchan, A. (2016). Modeling of traction electric drive with DC series motors. Eastern-European Journal of Enterprise Technologies, 1, 2(79), 42-48. doi: 10.15587/1729-4061.2016.60322

Nakhodkin, M. D., & Khvostov, V. S. (1958). Universalnaya magnitnaya kharakteristika. Vestnik elektropromyshlennosti, 1, 44-48.

All-Soviet Union Research Institute of Railway Transport. (1985). Pravila tyagovykh raschetov dlya poyezdnoy raboty. Moscow: Transport.

Nakhodkin, M. D., Vasilenko, G. V., Bocharov, V. I., & Kozorezov, M. A. (1976). Proyektirovaniye tyagovykh elektricheskikh mashin. Moscow: Transport.

Tishchenko, A. I. (Ed.). (1976). Spravochnik po elektropodvizhnomu sostavu teplovozam i dizel-poyezdam. Moscow: Transport.

Castaneda, C. E., Loukianov, A. G., Sanchez, E. N., & Bernardino, C.-T. (2012). Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux. IEEE Transactions on Industrial Electronics, 59(2), 1194-1207. doi: 10.1109/TIE.2011.2161246

Castañeda, C. E., & Esquivel, P. (2010). Direct current motor control based on high order neural networks using stochastic estimation. Proceedings of the 2010 International Joint Conference on Neural Networks IJCNNI, July 18-23, 2010, Barcelona, Spain, 1515-1520. doi: 10.1109/IJCNN.2010.5596331

Hayek, E. J., Sobczyk, T. J., & Skarpetowski, G. (2010). Experiences with a traction drive laboratory model. Electromotion, 17(1), 30-36.

Spiryagin, M., Wolfs P., Cole, C., Sun, Y. Q., McClanachan, M., Spiryagin, V., & McSweeney, T. (2017). Design and Simulation of Heavy Haul Locomotives and Trains. Boca Raton, London, New York: Taylor & Francis Group.

Zhang, Z., Zhao, X., Li, X., Lin, F., & Yang, Z. (2016). Electromechanical Coupled Vibration between Traction Motor and Bogie of High-Speed Train. Proceedings of the 6th International Conference on Mechatronics, Materials, Biotechnology and Environment ICMMBE-2016, August 13-14, 2016, Yinchuan, China. 153-158. doi: 10.2991/icmmbe-16.2016.30


GOST Style Citations


  1. Афанасов, А. М. Аппроксимация магнитных характеристик тяговых двигателей электроподвижного состава / А. М. Афанасов // Електромагнітна сумісність та безпека на залізн. транспорті. – 2012. – № 4. – С. 25–29.
  2. Белкина, Е. Н. Aнализ способов аппроксимации кривой намагничивания электротехнической стали / Е. Н. Белкина, С. А. Жуков // Инновационная наука. – 2015. – № 5. – С. 22–27.
  3. Бельман, М. Х. Переходные процессы в микродвигателях постоянного тока при импульсном питании / М. Х. Бельман. – Ленинград : Энергия, 1975. – 184 с.
  4. Вольдек, А. И. Электрические машины : учеб. для студ. высш. техн. учеб. заведений / А. И. Вольдек. – 3-е изд., перераб. – Ленинград : Энергия, 1978. – 832 с.
  5. Гетьман, Г. К. Аналіз аналітичних функцій для апроксимації універсальної магнітної характеристики тягових двигунів постійного та пульсуючого струму / Г. К. Гетьман, С. Л. Марікуца // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2011. – Вип. 37. – С. 63–71.
  6. Гетьман, Г. К. Об использовании универсальной магнитной характеристики для расчета электромеханических характеристик тяговых двигателей / Г. К. Гетьман, С. Н. Голик // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2007. – Вип. 16. – С. 21–25.
  7. Иванов-Смоленский, А. В. Электрические машины : учеб. для вузов / А. В. Иванов-Смоленский. – Москва : Энергия, 1980. – 928 с.
  8. Калантаров, П. Л. Расчет индуктивностей : справ. книга / П. Л. Калантаров, Л. А. Цейтлин. – 3-е изд., перераб. и доп. – Ленинград : Энергоатомиздат, 1986. – 488 с.
  9. Костенко, М. П. Электрические машины : в 2 ч. : учеб. для студ. высш. техн. учеб. заведений / М. П. Костенко, Л. М. Пиотровский. – 3-е изд., перераб. – Ленинград : Энергия, 1972. – Ч. 1: Машины постоянного тока. Трансформаторы. – 544 с.
  10. Костін, М. О. Теоретичні основи електротехніки : підручник в 3 т. / М. О. Костін, О. Г Шейкіна. – Дніпропетровськ : Вид-во Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна, 2006. – 336 с.
  11. Матюк, В. Ф. Математические модели кривой намагничивания и петель магнитного гистерезиса. Ч. I : Анализ моделей / В. Ф. Матюк, А. А. Осипов // Неразрушающий контроль и диагностика. – 2011. – № 2. – С. 3–35.
  12. Моделирование тягового электропривода с двигателями постоянного тока последовательного возбуждения / А. А. Шавелкин, И. А. Костенко, В. А. Герасименко, А. Н. Мовчан // Восточно-Европ. журн. передовых технологий. – 2016. – № 1 (2). – С. 42–48.
  13. Находкин, М. Д. Универсальная магнитная характеристика / М. Д. Находкин, В. С. Хвостов // Вестн. электропромышленности. – 1958. – № 1. – С. 44–48.
  14. Правила тяговых расчетов для поездной работы. – Москва : Транспорт, 1985. – 287 с.
  15. Проектирование тяговых электрических машин : учеб. пособие для вузов ж.-д. трансп. / М. Д. Находкин, Г. В. Василенко, В. И. Бочаров, М. А. Козорезов. – Москва : Транспорт, 1976. – 624 с.
  16. Справочник по электроподвижному составу тепловозам и дизель-поездам / под ред. А. И. Тищенко. – Москва : Транспорт, 1976. – 432 с.
  17. Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux / C. E. Castaneda, A. G. Loukianov, E. N. Sanchez, C.-T. Bernardino // IEEE Transactions on Industrial Electronics. – 2012. – Vol. 59. – Iss. 2. – P. 1194–1207. doi: 10.1109/TIE.2011.2161246.
  18. Castañeda, C. E. Direct current motor control based on high order neural networks using stochastic estimation / C. E. Castañeda, P. Esquivel // The 2010 Intern. Joint Conference on Neural Networks (IJCNNI) (18.07–23.07.2010). – Barcelona, Spain, 2010. – P. 1515–1520.
  19. Hayek, El. J. Experiences with a traction drive laboratory model / El. J. Hayek, T. J. Sobczyk, G. Skarpetowski // Electromotion. – 2010. – Vol. 17. – Iss. 1. – P. 30–36.
  20. Design and Simulation of Heavy Haul Locomotives and Trains / M. Spiryagin, P. Wolfs, C. Cole, [et al.]. – Boca Raton ; London ; New York : Taylor & Francis Group, 2017. – 465 p.
  21. Electromechanical Coupled Vibration between Traction Motor and Bogie of High-Speed Train / Z. Zhang, X. Zhao, X. Li [et al.] // Proc. of the 6th Intern. Conf. on Mechatronics, Materials, Biotechnology and Environment ICMMBE-2016 (13.08–14.08.2016). – Yinchuan, China, 2016. – P. 153–158. doi: 10.2991/icmmbe-16.2016.30.


DOI: https://doi.org/10.15802/stp2017/94031

 

Cited-by:

1. CALCULATION OF MAGNETIC CHARACTERISTICS OF TRACTION ELECTRIC ENGINE WITH THE USE OF IMPROVED UNIVERSAL MAGNETIC CHARACTERISTICS
A. Y. Drubetskyi
Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport  Issue: 3(69)  First page: 66  Year: 2017  
doi: 10.15802/stp2017/104559



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)