MODELING THE TRANSITION CURVE ON A LIMITED TERAIN

V. D. Borisenko, S. A. Ustenko

Abstract


Purpose. Further development of the method of geometric modelling of transition curves, which are placed between rectilinear and circular sections of railway tracks and are created in localities, the relief of which causes certain restrictions on the size of the transition curves of the railway track. Methodology. The equation of the transition curve is taken in parametric form, in which the length of the arc of the modelled curve is used as a parameter. As initial data in the modelling of the transition curve, the coordinates of its initial point and the angle of inclination in it are tangent, the radius of the circumference of the circular section and the parameter that is used as a constraint when placing a section of the railway track. The transition curve is modelled under the condition that the distribution of its curvature from the length of the arc - the natural parameter - is described by a cubic dependence. This dependence contains four unknown coefficients; the unknown is also the length of the arc. The coefficients of the cubic dependence and the length of the arc of the transition curve, the coordinates of its end point, the angle of inclination in it of the tangent are determined during the simulation of the transition curve. The application of boundary conditions and methods of differential geometry with respect to the distribution of the slope angle of the tangent to the simulated curve from the initial to the end points of the transition curve and the calculation of the coordinates of the end point of the curve allows us to reduce the problem of modelling the transition curve to determine the arc length of this curve. Directly the length of the transition curve is in the process of minimizing the deviation of the circumference of the circular path from its current value obtained when searching for the arc length. Findings. As a result of the computational experiment, the possibility of modelling a transition curve between a rectilinear and circular rail track in a region of a limited size has been proved. Originality. A method for geometric modelling of transition curves between a rectilinear and circular section of a railway track is developed in conditions of limited terrain size, on which rails are laid. The transition curve is represented in the natural parameterization, using the cubic dependence of the curvature distribution on the length of its arc. Practical value. The proposed method of modelling the transition curves in conditions of limited terrain size allows obtaining these curves with a high accuracy in a wide range of geometric parameters of rectilinear and circular sections of the railway track and a parameter that acts as a constraint in the modelling of the transition curve. The method can be recommended in the practice of building railways.


Keywords


geometric modelling; transition curve; limited area; the curvature of the curve; a cubic dependence; curvature distribution

References


Amelin, S. V., & Danovskiy, L. M. (1986). Put i putevoye khozyaystvo. Moscow: Transport.

Badaiev, S. Y., Borovik, Y. O. (2009). Kryvoliniinyi sehment na osnovi intehralnoi kryvoi. Applied Geometry and Graphics, 81, 213-217.

Borysenko, V. D., Ustenko, S. A., & Komar, V. S. (2008). Heometrychne modeliuvannia ploskoho kryvoliniinoho obvodu iz zastosuvanniam kubichnoho zakonu rozpodilu ioho kryvyny. Applied Geometry and Graphics, 79, 52-57.

Yelfimov, G. V. (1948). Teoriya perekhodnykh krivykh. Moscow: Transzheldorizdat.

Kurhan, M. B., & Novik, R. B. (2014). Osnovni vymohy do vyboru radiusiv kryvykh pry proektuvanni vysokoshvydkisnykh mahistralei. Proceedings of the 74 International Scientific & Practical Conference The problems and prospects of railway transport development, May 15-16, 2014, Dnipropetrovsk. 270-271.

Kurhan, M. B., Kurhan, D. M. (2014). Osnovni vymohy do vyboru formy i dovzhyny perekhidnykh kryvykh pry proektuvanni vysokoshvydkisnykh mahistralei. Proceedings of the 74 International Scientific & Practical Conference The problems and prospects of railway transport development, May 15-16, 2014, Dnipropetrovsk. 253-254.

Kurhan, M. B., Husak, M. A., & Khmelevska, N. P. (2012). Reconstruction of curves for introduction of highspeed traffic of passenger train. Bulletin of Dnipropetrovsk National University of Railway Transport, 40, 90-97.

Laguta, V. V. (2002). Improvement of designing of the railway curves in a plan. (PhD thesis). Available from Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Dnipropetrovsk.

Lazaryan, V. A. (1985). O forme perekhodnoy krivoy (Teoreticheskiye osnovy vybora ratsionalnoy formy perekhodnoy krivoy). Dinamika transportnykh sredstv (pp. 10-24). Kyiv: Naukova dumka.

Mironov, V. S., & Rudenko, T. A. (2014). Radii of circular curves for high-speed railways when using railway tilting cars. Vestnik transporta Povolzhya, 3(45), 44-50.

Borysenko, V., Agarkov, O., Palko, K., & Palko, M. (2016). Modeling of curves in the natural parametrization. Heometrychne modeliuvannia ta informatsiini tekhnolohii, 1, 21-27.

Protsenko, A. I., & Bredyuk V. B. (1971). Metodika rascheta na EVM slozhnykh zheleznodorozhnykh krivykh pri tekushchem soderzhanii puti. Sbornik trudov NIIZHT, 130, 48-53.

Ustenko, S. A., Didanov, S. V., & Aharkov, O. Y. (2011). Heometrychne modelyuvannya kryvykh liniy iz zadanoyu kryvynoyu v hranychnykh tochkakh. Applied Geometry and Graphics, 87, 404-409.

Ustenko, S. A., Didanov, S. V., & Aharkov, O. Y. (2014). Investigation of curves set by cubic distribution of curvature. Science and Transport Progress, 2(50), 164-172. doi: 10.15802/stp2014/23797

Ustenko, S. A., & Didanov, S. V. (2013). Method of construction spatial transition curve. Science and Transport Progress, 2(44), 124-128. doi: 10.15802/stp2013/11394

Chernyshev, M. A., & Kreynis, Z. L. (1985). Zheleznodorozhnyy put. Moscow: Transport.

Shakhunyants, G. M. (1972). Proyektirovaniye zheleznodorozhnogo puti. Moscow: Transport.

Shen, T.-I, Chang, C.-H., Chang, K.-Y., & Lu, C. C. (2013). A numerical study of cubic parabolas on railway transition curves. Journal of Marine Science and Technology, 21(2), 191-197. doi: 10.6119/JMST-012-0403-1

Eliou, N., & Kaliabetsos, G. (2014). A new, simple and accurate transition curve type, for use in road and railway alignment design. European Transport Research Review, 6(2), 171-179. doi: 10.1007/s12544-013-0119-8

Farin, G. (1997). Curves and surfacts for computer-aided geometric design: a practical guide (4th ed.). London: Academic Press Inc.

Hooke, R., & Jeeves, T. A. (1961). Direct search solution of numerical and statistical problems. Journal of the ACM, 8(2), 212-229. doi: 10.1145/321062.321069

Lipicnik, M. (1998). New form of road/railway transition curve. Journal of Transportation Engineering, 124(6), 546-556. doi: 10.1061/(asce)0733-947x(1998)124:6(546)

Long, X.-Y., Wei, Q.-C., & Zheng, F.-Y. (2010). Dynamic analysis of railway transition curves. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 224(1), 1-14.

Tari, E., & Baykal, O. (2005). A new transition curve with enhanced properties. Canadian Journal of Civil Engineering, 32(5), 913-923. doi: 10.1139/l05-051

Arslan, A., Tari, E., Ziatdinov, R., & Nabiyev, R. I. (2014). Transition Curve Modelling with Kinematical Properties: Research on Log-Aesthetic Curves. Computer-Aided Design & Applications, 11(5), 509-517. doi: 10.1080/16864360.2014.902680


GOST Style Citations


  1. Амелин, С. В. Путь и путевое хозяйство / С. В. Амелин, Л. М. Дановский. – Москва : Транспорт, 1986. – 215 c.
  2. Бадаєв, С. Ю. Криволінійний сегмент на основі інтегральної кривої / С. Ю. Бадаєв, Є. О. Боровік // Прикладна геометрія та інженерна графіка : міжвідом. наук.-техн. зб. / Київ. держ. техн. ун-т буд-ва і архітектури. – Киів, 2009. – Вип. 81. – С. 213–217.
  3. Борисенко, В. Д. Геометричне моделювання плоского криволінійного обводу із застосуванням кубічного закону розподілу його кривини / В. Д. Борисенко, С. А. Устенко, В. С. Комар // Прикладна геометрія та інженерна графіка : міжвідом. наук.-техн. зб. / Київ. держ. техн. ун-т буд-ва і архітектури. – Киів, 2008. – Вип. 79. – С. 52–57.
  4. Ельфимов, Г. В. Теория переходных кривых / Г. В. Ельфимов. – Москва : Трансжелдориздат, 1948. – 31 с.
  5. Курган, М. Б. Основні вимоги до вибору радіусів кривих при проектуванні високошвидкісних магістралей / М. Б. Курган, Р. Б. Новік // Проблемы и перспективы развития железнодорожного транспорта : тез. 74 Междунар. науч.-практ. конф. (Днепропетровск, 15–16 мая2014 г.). – Днепропетровск, 2014. – С. 270–271.
  6. Курган, М. Б. Основні вимоги до вибору форми і довжини перехідних кривих при проектуванні високошвидкісних магістралей / М. Б. Курган, Д. М. Курган // Проблемы и перспективы развития железнодорожного транспорта : тез.74 Междунар. науч.-практ. конф. (Днепропетровск, 15–16 мая 2014 г.). – Днепропетровск, 2014. – С. 253–254.
  7. Курган, М. Б. Перебудова кривих для впровадження швидкісного руху пасажирських поїздів / М. Б. Курган, М. А. Гусак, Н. П. Хмелевська // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2012. – Вип. 40. – С. 90–97.
  8. Лагута, В. В. Удосконалення проектування кривих залізничної колії в плані : автореф. дис. … канд. техн. наук : 05.22.06 / Лагута Василь Васильович ; Дніпропетр. держ. техн. ун-т залізн. трансп. – Дніпропетровськ, 2002. – 18 с.
  9. Лазарян, В. А. О форме переходной кривой (Теоретические основы выбора рациональной формы переходной кривой) / В. А. Лазарян // Динамика транспортных средств. – Киев : Наук. думка, 1985. – С. 10–24.
  10. Миронов, В. С. Радиусы круговых кривых для скоростных железных дорог при использовании вагонов с наклоном кузова / В. С. Миронов, Т. А. Руденко // Вестн. трансп. Поволжья. – 2014. – № 3 (45). – С. 44–50.
  11. Моделювання плоских кривих у натуральній параметризації / В. Борисенко, О. Агарков, К. Палько, М. Палько // Геометричне моделювання та інформаційні технології. – 2016. – № 1. – С. 21–27.
  12. Проценко, А. И. Методика расчета на ЭВМ сложных железнодорожных кривых при текущем содержании пути / А. И. Проценко, В. Б. Бредюк // Сб. тр. Новосиб. ин-та инженеров трансп. – Новосибирск, 1971. – Вып. 130. – С. 48–53.
  13. Устенко, С. А. Геометричне моделювання кривих ліній із заданою кривиною в граничних точках / С. А. Устенко, С. В. Діданов, О. Ю. Агарков // Прикладна геометрія та інженерна графіка : міжвідом. наук.-техн. зб. / Київ. держ. техн. ун-т буд-ва і архітектури. – Киів, 2011. – Вип. 87. – С. 404–409.
  14. Устенко, С. А. Дослідження кривих ліній, заданих кубічним розподілом кривини / С. А. Устенко, С. В. Діданов, О. Ю. Агарков // Наука та прогрес транспорту. – 2014. – № 2 (50). – С. 164–172. doi: 10.15802/stp2014/23797.
  15. Устенко, С. А. Метод побудови просторової перехідної кривої / С. А. Устенко, С. В. Діданов // Наука та прогрес транспорту. – 2013. – № 2 (44). – С. 124–128. doi: 10.15802/stp2013/11394.
  16. Чернышев, М. А. Железнодорожный путь / М. А. Чернышев, З. Л. Крейнис. – Москва : Транспорт, 1985. – 302 с.
  17. Шахунянц, Г. М. Проектирование железнодорожного пути / Г. М. Шахунянц. – Москва : Транспорт, 1972. – 140 c.
  18. A numerical study of cubic parabolas on railway transition curves / T.-I Shen, Ch.-H. Chang, K.-Yu. Chang, Ch.-Ch. Lu // J. of Marine Science and Technology. – 2013. – Vol. 21, No. 2. – P. 191–197. doi: 10.6119/JMST-012-0403-1.
  19. Eliou, N. A new, simple and accurate transition curve type, for use in road and railway alignment design / N. Eliou, G. Kaliabetsos // European Transport Research Review. – 2014. – Vol. 6. – Iss. 2. – P. 171–179. doi 10.1007/s12544-013-0119-8.
  20. Farin, G. Curves and surfaces for computer-aided geometric design: a practical guide / G. Farin. – 4 th ed. – Academic Press Inc., 1997. – 447 p.
  21. Hooke, R. "Direct Search" Solution of Numerical and Statistical Problems / R. Hooke, T. A. Jeeves // J. of the ACM. – 1961. – Vol. 8. – Iss. 2. – P. 212–229. doi: 10.1145/321062.321069.
  22. Lipicnik, M. New form of Road/Railway Transition Curve / M. Lipicnik // J. of Transportation Engineering. – 1998. – Vol. 124. – Iss. 6. – P. 546–556. doi: 10.1061/(asce)0733-947x(1998)124:6(546).
  23. Long, X.-Y. Dynamic analysis of railway transition curves / X.-Y. Long, Q.-C. Wei1, F.-Y. Zheng // Proc. of the Institution of Mechanical Engineers, Part F: J. of Rail and Rapid Transit. – 2010. – Vol. 224. – Iss. 1. – P. 1–14. doi: 10.1243/09544097jrrt287.
  24. Tari, E. A new transition curve with enhanced properties / E. Tari, O. Baykal // Canadian J. of Civil Engineering. – 2005. – Vol. 32. – Iss. 5. – P. 913–923. doi: 10.1139/l05-051.
  25. Transition Curve Modelling with Kinematical Properties: Research on Log-Aesthetic Curves / A. Arslan, E. Tari, R. Ziatdinov, R. I. Nabiyev // Computer Aided Design & Applications. – 2014 – Vol. 11. – Iss. 5. – P. 509–517. doi: 10.1080/16864360.2014.902680.


DOI: http://dx.doi.org/10.15802/stp2017/99942

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

ISSN 2307–3489 (Print)
ІSSN 2307–6666 (Online)